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Some of the Biggest Questions  
Connecting Quarks and the Cosmos 

Board on Physics and Astronomy 
US National Academy of Sciences

• What are the 
masses of the 
neutrinos, and how 
have they shaped 
the evolution of the 
universe?

• How were the 
elements from iron to 
uranium made?



Big Bang:

75% H + 25% He
(by mass)

Sun:
71.5% H + 27.0% He

+1.4% “Metals”

“p”� “n” + e+ + �e



Solar fusion & neutrinos: 4p ! 4He + 2e+ + 2⌫e









Nucleosynthesis via slow neutron capture (s-process) 
in low & intermediate-mass stars

3 4He! 12C + �

12C + p! 13N + �

13C + 4He! 16O + n

n +

56
Fe! s-process nuclei

13N! 13C + e+ + ⌫e

4 4He + p! n + e+ + ⌫e + 16O



Evidence for s-process in low & intermediate-mass stars

discovery of Tc spectral lines in stars by Merrill in 1952

Tc has no stable isotopes; the half-lives of the 
longest-lived isotopes are:

2.6� 106, 4.2� 106, 2.1� 105 yr for 97Tc, 98Tc, 99Tc



A � 130

A � 195

A = 138
A = 208



slow (s) and rapid (r) neutron capture processes

N = 82

Z = 48

Z = 56
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Rapid neutron capture: the r!process
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Supernovae as a
neutrino phenomenon

e+ + e� � � + �̄

N + N � N + N + � + �̄

GM2

RNS
⇥ 3� 1053 erg

� �e, �̄e, �µ, �̄µ, �� , �̄�



Characteristics of Supernova Neutrino Emission

numerical results sensitive to neutrino opacities!
(Martinez-Pinedo et al. 2012; Roberts & Reddy 2012)



Setting n/p in the Neutrino-Driven Wind
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Qian et al. 1993
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Neutrino Opacities!  
Martinez-Pinedo et al. 2012; Roberts & Reddy 2012 
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r!process nuclein, seeds

r!Process in Neutrino!driven Wind

n/p > 1

(e.g., Woosley & Baron 1992; Meyer et al. 1992; Woosley et al. 1994)

T ~ 0.5 MeV

T ~ 1 MeV

T ~ 0.25 MeV

n, He4 seeds (A ~ 90)

n, p He4

4He(↵n, �)9Be(↵, n)12C



(Witti et al. 1994; Qian & Woosley 1996;
Wanajo et al. 2001; Thompson et al. 2001; 
Fischer et al. 2010; Roberts et al. 2010)

Ye ⇠ 0.4–0.5, S ⇠ 10–100, ⌧dyn ⇠ 0.01–0.1 s

(Woosley & Hoffman 1992; Arcones & Montes 2011)

Sr, Y, Zr (A~90) readily produced in the wind,
up to Pd & Ag (A~110) likely

production of r-nuclei up to A~130 possible,
but very hard to make A>130 

(Hoffman et al. 1997; Wanajo 2013)

Conditions in the Neutrino-Driven Wind



⇥̄e + 4He� 3H + n + e+, �⇥̄e�,n ⇥ T5–6
⇥̄e

!

Neutrino-Induced r-Process in He Shell of early SNe

4He(�, �n)3He(n, p)3H(3H, 2n)4He

⇠ 11M�

Epstein, Colgate, & Haxton 1988

neutron production by

neutron capture by 56Fe

high nn requires few 56Fe

early SNe

Banerjee, Haxton, & Qian 2011



neutrino spectra & flavor oscillations

T�e � 3–4 MeV, T�̄e � 4–5 MeV, T�µ,� = T�̄µ,� � 6–8 MeV

�̄e � �̄µ,�

in supernovae

We know the mass-squared differences: 

We do not know the absolute masses or the mass hierarchy: 

4He(�̄e, e+n)3H4He(⌫e, e
�p)3He

⌫e ⌦ ⌫µ,⌧
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neutron star
mergers?

supernovae?



Neutron
Star

Mergers

Goriely,
Bauswein,
& Janka 

2011

Rosswog 
et al.

1999, 2014
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AA52CH02-Berger ARI 30 July 2014 6:55

BH

θobs

θj

Jet−ISM shock (afterglow)
Optical (hours−days)
Radio (weeks−years)

Ejecta−ISM shock
Radio (years)

Kilonova
Optical (t ~ 1 day)

Merger ejecta
Tidal tail and disk wind

v ~ 0.1–0.3 c

GRB
(t ~ 0.1–1 s)

GRB
(t ~ 0.1–1 s)

Figure 20
Potential electromagnetic counterparts of compact object binary mergers as a function of the observer
viewing angle (θobs). Rapid accretion of a centrifugally supported disk (blue) powers a collimated relativistic
jet, which produces a short GRB. Owing to relativistic beaming, the gamma-ray emission is restricted to
observers with θobs ! θj. Afterglow emission results from the interaction of the jet with the circumburst
medium ( pink). Optical afterglow emission is detectable for observers with θobs ! 2θj. Radio afterglow
emission is observable from all viewing angles once the jet decelerates to mildly relativistic velocities on a
timescale of months-years and can also be produced on timescales of years from subrelativistic ejecta.
Short-lived isotropic optical/near-IR emission lasting a few days (kilonova; green) can also accompany the
merger, powered by the radioactive decay of r-process elements synthesized in the ejecta. Reprinted from
Metzger & Berger (2012) with permission.

accuracy of the GW source (if detected by an instrument such as Swift/BAT), but even a poor
gamma-ray localization will provide a convincing association based on the temporal coincidence.
However, because the current estimate of the beaming fraction is fb ∼ 70 (Section 8.4), such
joint detections will be rare. The occurrence rate can be estimated using the observed short GRB
redshift distribution (Metzger & Berger 2012). In particular, there are currently no known short
GRBs within the Advanced LIGO/Virgo maximum detection distance for NS-NS binaries of
z ≈ 0.1. Extrapolating the observed redshift distribution to z ! 0.1, and correcting from the
Swift/BAT field of view to roughly all-sky coverage (e.g., Interplanetary Network, Fermi/GBM),

www.annualreviews.org • Short-Duration Gamma-Ray Bursts 91
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discovery of an r-process kilonova?
Tanvir+  2013!

barnes&kasen!

kilonova

10 -1 M
sun

10 -2 M
sun

optical
infrared

G
RB afterglow



Summary

Stars of ~1.5-3 Msun are the dominant source for the 
main s-process elements by providing neutrons via 
12C(p,g)13N(e+ve)13C(a,n)16O

SNe of ~8-40 Msun can provide neutrons for the r-process by

3. leaving behind an NS

in neutrino-driven winds: up to A~130

in early SNe ([Fe/H] < -3): up to A>200

for NS mergers: A>130

2. ⌫̄e +
4He ! 3H+ n+ e+

1. ⌫̄e + p ! n+ e+


