Photon Detector Reconstruction Efficiency Study

Gleb Sinev
DUNE 35ton Sim/Reco/Analysis June 10, 2015

Small hit finder improvements

- AlgoSiPM (the new hit finder) is controlled via FHiCL parameters:
two thresholds, minimum width, pedestal
- PE is calculated using hit area (previously used peak height, so seems more trustworthy now)
- Still somewhat off

Number of PEs per OpHit

PD efficiency study

- Paused attempts at improving PD simulation and reconstruction to estimate performance of what already works

Simulation

- ~10 000 events
- Single electrons
- Energy: 0.005, 0.010, 0.200, 0.500 GeV
- X0: 0 to 220 cm in 20 cm steps
- Isotropic direction
- Y0: 50 cm (want uniform distribution, but don't know where to find active volume dimensions)
- Z0: 0 cm (same here)

PD simulation

- Dark noise rate: 10 Hz
- Line noise RMS: 2.6 ADC counts
- Cross-talk: 16.5\%
- Pedestal: 1500 ADC counts

This is how a waveform looks like (1 OpChannel, 1 event)

OpHit time distribution

OpHit time distribution

Dark noise

OpFlash time distribution

Better peak

Next steps

- Quantifying time resolution
- Estimating efficiency for different energy values as function of distance from APAs

Backup slides

Figuring out DUNE 35t geometry

Default vertex
$X 0=100 \mathrm{~cm}$
$Y 0=50 \mathrm{~cm}$
$Z 0=0 \mathrm{~cm}$

Standard simulation generates particles on the edge of the active volume

Why? Is it because it is supposed to be a cosmic ray event?

