EM Shower Start Point Reconstruction

Dorota Stefan, Robert Sulej NCNR Warsaw

Introduction

- AIM: π^0 reconstruction
- π^0 from hadronic interactions

 π^{0} 's can be reconstructed in the context of the full event topology:

- vertex, if contained, can be used to merge cascade fragments and define cascade directions
- relies on track and vertex reconstruction = full event reco...

Analysis of cascade features independent from other algorithms can be used in the full reconstruction chain, or used independently if needed – we focus on this approach now.

 $3~\pi^0$ from cosmic rays during ICARUS tests on surface in Pavia.

Fig. from Acta Phys.Polon.B41:103-125,2010. arXiv:0812.2373

π^0 possible reconstruction chain

- Preselect events with showers.
- Apply track-like and shower-like clustering.
- Reconstruct shower start point (this talk).
- Match 2D views and reconstruct 3D direction.
- Search for the pairs of showers that point to the common vertex.

Simulation and data preparation

- Single photon simulated with momentum 700 MeV.
- Only Collection used.

Approach

Algorithm that identifies primary vertex is based on the shape of the cascade and the charge distribution. It also takes into account that we are looking for: double m.i.p. from the primary vertex and a high charge asymmetry in the local angular distribution.

Algorithm part 1

- Barycenter of the hits positions of the shower.
- Searching for the most external positions of the shower in the angular bins: "candidates".
- → maximum distance to barycenter defines "the size" of cascade, and normalization of distances.

Algorithm part 2

- Angular charge distribution (48 bins) for each candidate.
- Compute charge asymmetry (max vs. mean of the rest) for each candidate.
- Candidate with the highest max charge defines the charge normalization.

Algorithm part 3

- Parameters which can be tuned: number of bins and radius for which the angular charge distribution is made.
- We consider two points as good candidates for shower start point: the most distant from the barycenter AND with the highest maximum charge.
 The candidate with the higher charge asymmetry is taken as primary vertex.

Sample generated with the parameters: point of gen (100, 0, 20), Theta0XZ: 0 and sigma: 0; Theta0YZ: 0 and sigma 180 For reco, for simplicity, we take only photons which converted in TPC 1

Reasons for inefficiency.

- short projection of the shower
- asymmetric (open) pair production
- long, track like topologies

Some difficult configurations:

Sample generated with the parameters: point of gen (100, 0, 20), Theta0XZ: 0 and sigma: 90; Theta0YZ: 0 and sigma 180 For reco, for simplicity, we take only photons which converted in TPC 1

Sample generated with the parameters: point of gen (100, -60, 20), Theta0XZ: 45 and sigma: 0; Theta0YZ: 45 and sigma 0 For reco, for simplicity, we take only photons which converted in TPC 1

Next steps

- The algorithm should include "no answer" possibility, e.g. too low asymmetry – to be investigated.
- Combine all views: select the best projection (highest asymmetry of the selected start point, or length of the cascade); matching of pairs between views.
- 3D reconstruction of the primary vertex and initial direction.

•