LArSoft/LArLite Interoperability Proposal
Chris Jones, Marc Paterno

DRAFT FOR REVIEW

Overview

The purpose of this document is to advance the discussion regarding the interoperability of
LArSoft and LArLite. The first sections of the document describe the current status of LArSoft
and LArLite. The following sections describe our proposals for allowing the interoperability of the
two systems, and which we believe will improve ease of use and maintainability. This is not a
final proposal; this document is intended to elicit feedback to allow the production of a final
proposal. The final proposal will define the tasks to be undertaken by members of the SCD,
developers of LArSoft, and developers of LArLite."

Our description of the use of LArLite is the result of a series of interviews of users (and the initial
author) of LArLite, conducted by the authors. We have synthesized the data obtained from
these interviews. These interviews drove our proposals. The people we interviewed were Kazu
Terao (the initial author of LArLite), Wes Ketchum, David Adams, Ryan Grosso, and Corey
Adams.

What is LArLite?

LArLite is two related systems: (1) a project layout generator and build mechanism and (2) a
modular “event loop” driver and ancillary software, built by (1). Part of the challenge of
describing its current uses and possible future development is being clear about which system
is being discussed.

Build mechanism

The core of LArLite is a generator for producing a specific directory structure, GNU Makefiles
and skeleton source files, including the necessary mechanisms to generate ROOT dictionaries.
The design is such that there is a recommended (by the author) way of combining the
generated code with other code generated in the same manner. The structure and use of the
Makefiles is not enforced in the system, which allows users to tailor it to their own personal
needs.

Modular event loop driver

When many people speak of LArLite they are not referring to the build mechanism but instead to
a modular event loop driver that is built using that mechanism. Algorithms are packaged into

' We have begun preliminary tasks already; David Dagenhart has started familiarizing himself with the
development model for art and LArSoft.



modules. The event loop driver reads events in sequence and passes the event data from
module to module.

As part of the infrastructure for the event loop driver there are C++ classes which represent
frequently-used data products. Some of these data products are designed to mirror LArSoft data
products while others are experiment-specific.

Why do people use LArLite?

For the build mechanism, and development of algorithms

1.

ok wd

Faster build than when developing in LArSoft.

Smaller installation than needed for developing in LArSoft.

Faster installation with fewer steps than required for LArSoft.

Better stability; LArSoft’s head is updated frequently, leading to breakage of user code.
Availability on Ubuntu.

Freedom to commit code to one’s own repository, no need to synchronize with the
LArSoft community.

For the event loop driver, doing analysis and developing (testing) algorithms

1.

5.
6.

Event loop is simpler, thus faster, than the one in art. The speed difference depends on
the tasks being done, and so is hard to meaningfully quantify. Very large factors are
reported in a case when the art framework was configured to do time-consuming but
needless work on every event.

Definition of data products can be experiment-specific.

Existing frequently-used data products in LArLite have a preferred interface to those in
LArSoft, especially for iteration.

Modification of data products is easier; modified code can be committed to one’s own
repository without need for coordination between experiments or groups.

Integration with PyRoot for analysis or for writing tests is simple.

LArLite writes bare ROOT data files containing a TTree.

Recommendations: How to use LArSoft from LArLite
Using LArSoft from LArLite means:

1.
2.

3.

Reading art/ROOT data files.

Using LArSoft data products (read from art/ROOT files, or created directly in LArLite);
this means using the LArSoft classes directly, not copying them.

Using existing LArSoft algorithms in the LArLite event loop driver is not included. None of
the users we interviewed are currently doing this, nor when asked did they wish to do so.
The common pattern of use is to use LArSoft to generate LArLite data files, and then to
work in the context of LArLite. Given that it would take considerable extra effort to
include the ability to use LArSoft algorithms in LArLite, and lacking a clear statement of
its importance, we do not think the effort should be expended. This limitation should be



reviewed after there is experience in using the result of the integration, if there is
sufficient community interest.

Using LArSoft data products

LArSoft should be used through a binary distribution. Only the part of LArSoft necessary to
provide usable data products needs to be accessed. This is analogous to how LArLite is already
using ROOT.
1. LArLite should have Makefile fragments that give access to LArSoft headers and
libraries.
2. The LArLite setup should establish the user’s environment in order to access the
necessary parts of LArSoft, e.g., properly setup the path to find the shared libraries.

Reading art/ROOT data files

It should be possible to read art/ROOT data files, containing LArSoft products, from outside of
the art framework. This requires:

1. Access to the ROOT dictionaries for the required classes.
Access to the LArSoft and art header files and libraries for the required classes.
The ability to resolve art::Ptr objects (which makes available the use of art::Assns).
The art::FindOne and art::FindMany classes must be made to work.
An art::Event-like class is needed for type-safe access to data products in an art/ROOT
file.

6. Both sequential and random access into art/ROOT data files must be supported.
The user should be able to open multiple art/ROOT data files simultaneously in their own code
outside of art, (e.g. their event loop driver). It would be the user’s responsibility to ensure
whatever consistency requirements are relevant are met.

ok own

Recommendations: How to develop, in LArLite, code that is
interoperable with LArSoft

In this context, interoperable means two things: (1) a dynamic library built using LArLite’s build
mechanism should be linkable directly to a program utilizing LArSoft, and (2) the source code
for such a library can be moved to LArSoft without modification.

1. The LArLite build mechanism should be able to build a dynamic library containing an
algorithm, so that that one can build and link an art module that uses that algorithm.

2. LArLite directory naming conventions may need to be modified to support this.

3. There must be a development workflow devised that must be followed for the
development of the subset of LArLite code that is to be available in LArSoft. It must be
possible to migrate LArLite code from using some other set of development procedures
to using these required development procedures. This allows a user to start
development however they are most comfortable, and to adopt the required procedures
for compatibility with LArSoft only when that is desired. Options for this workflow will be



presented in a follow-up document. Requirements that must be satisfied by this
procedure are described in the appendix.

Suggested changes to LArSoft and art

1. LArSoft should better document and advertise the binary distributions.
2. It should be possible to do a binary installation of the LArSoft data products without
needing to install all the rest of LArSoft.
a. LArSoft repositories may need some reorganization to support this.
b. It will be necessary to identify the parts of art needed by the LArSoft data
products, and to allow the distribution of that part of art.
c. The external dependencies of these products should be minimized.
3. ROOT 6 is capable of understanding much more C++ than was ROOT 5. LArSoft and art
should move to using ROOT 6, and the LArSoft/LArLite integration effort should proceed
using the versions of art and LArSoft that have moved to ROOT 6.
4. The file paths used for #include statements in LArSoft may need to be modified, in order
to make the migration of code meet the above requirements.
5. art::Ptr must be made to work outside of the framework. This may involve some
reorganization of art itself, which is related to (2b) above.
6. The LArLite data products should be evaluated to see what changes in LArSoft data
products should be made to improve LArSoft’s usability.
In addition to the changes above, it may be necessary to introduce an artlite package (name to
be determined), to contain the “light framework support” components (e.g. a “lite Event” class).
This new package should depend only upon those parts of art that are necessary,
which means that art itself may need to be split. This split should be done in a fashion such that
existing users of art do not need to make modifications of their code.

Suggested changes to LArLite

The LArLite build mechanism should allow (but not require) the user to setup art and LArSoft.
This might be made available as an add-on to the LArLite build mechanism. This will allow users
to be able to develop, under the LArLite build mechanism, a complete art module, and to
immediately use that module in art.

We are concerned that the current build mechanism makes it too easy to accidentally produce
an inconsistent build (e.g. part of a system built with C++03, and part with C++14). More
investigation is needed to determine how to help assure consistency while retaining ease of
use. Shared code (e.g. code that uses the LArLite event loop driver) may need stricter rules
than an individual user’s code.

Better version control over the LArLite code may be needed; we are not aware of an existing
policy for control. Tagged releases, if they do not already exist, are needed.



Code that goes into the LArLite-dependent repositories that are shared and supported should
follow a set of best practices agreed upon for the project. We suggest LArSoft and LArLite
should embrace the same policies.

Appendix

Requirements for the development procedure for LArLite code to be used in
LArSoft

Note that no special preparation must be needed while developing code using LArLite. The
required development procedure is only needed for code in LArLite that is to be used from
LArSoft, when it is determined that that code is to be used from LArSoft.

LArSoft needs full control over the code it will release. Possible solutions include the follow;
others are possible. This might be accomplished by LArSoft controlling a repository forked from
one originally created by a LArLite user. LArSoft and art also already have the facility to make
use of UPS products built from source code not under version control by LArSoft or art (e.g.
ROOT and GEANT4); the same techniques could be used to create controlled versions of UPS
products for code managed in LArLite repositories.

There must be a prescribed procedure for migrating code changes between LArSoft and LArLite
that prevents unintentional divergence of any source code being maintained in both. Note that
one way of meeting this requirement is to require the source to reside in exactly one master
repository. There are also other possible solutions, such as a workflow required for interacting
with forked repositories as described above.

As mentioned in the main body of the proposal, there shall be a follow-up document proposing
several solutions, describing their strengths and weaknesses, including the authors’
recommendations. That document should be presented to the LArSoft and LArLite stakeholders
for a final selection of a solution. That document is to be used as an additional input for the
production of a final work proposal.



