Channel filtering in LArSoft

Gianluca Petrillo, Saba Sehrish, Erica Snider

University of Rochester/Fermilab

LArSoft Architecture Review Meeting, June 241" | 2015

GV

UNIVERSITY of

OCHESTER 2= Fermilab

G. Petrillo (Rochester/FNAL) June 241" | 2015 1/11

Channel filtering

The channel filter provides information about goodness of each TPC
readout channel.

The information hosted so far includes:
bad channel is dead of irremediably bad
noisy channel is noisy

non-physical channel has no actual data
(added by MicroBooNE to describe “wireless” channels)

G. Petrillo (Rochester/FNAL)

June 24" | 2015

Current implementation

Well...
class filter::ChannelFilter {
public:
enum ChannelStatus { GOOD =0,
NOISY = d,
DEAD = 2,
NOTPHYSICAL = 3

ChannelFilter () ;

bool BadChannel (uint32_t channel);
bool NoisyChannel (uint32_t channel);
ChannelStatus GetChannelStatus (uint32_t channel) const;
std::set<uint32_t> SetOfBadChannels () const;
std::set<uint32_t> SetOfNoisyChannels () const;

}; //class ChannelFilter

Listing 1: Current ChannelFilter class

The current implementation is a joke | will not detail here.
Just note the arguments of the constructor...

G. Petrillo (Rochester/FNAL) June 24t ,2015

Current uses

Very simple to use: instantiate, then query.

filter::ChannelFilter chanFilt;
/Y ooo

for (auto & itr : planeIDToHits) {
allhits.resize(itr.second.size());
allhits.swap(itr.second);

fDBScan.InitScan(allhits, chanFilt.SetOfBadChannels());

/Y oo
}

Listing 2: Excerpts from DBcluster module
Currently used in:
calibration recob: :Wire should not be created for bad channels
reconstruction algorithms for track-like clusters check if a gap was due
to a bad channel (usually, in the wrong way)
event display

G. Petrillo (Rochester/FNAL) June 24! 2015 4/11

In short:
@ experiment-dependent behaviour is hard-coded
@ the channel maps are also hard-coded

(sorry about that)

Requirements of the new channel filtering:
@ expose a single interface to the user code
@ allow independent implementations by the experiments

@ support as data sources: FHICL configuration, text files,
databases...

@ as easy as the current one to use in the code

G. Petrillo (Rochester/FNAL) June 24t ,2015

Proposed solution

LArSoft proposal:

A common service interface hiding experiment specific implementation
of channel quality queries.

In particular, the database-based service model (used, for example, to
retrieve pedestal information) seems suitable for our goals.
LArSoft would implement:

@ abstract service provider interface (framework-independent)
© abstract art service interface
© default implementation of both for FHiCL-driven data

G. Petrillo (Rochester/FNAL) June 24t ,2015 6/11

Proposed service provider interface

The service provider might follow this interface:

class filter::ChannelQuality {
public:
using ChannelSet_t = std::set<raw::ChannellID_t>;

virtual ~ChannelQuality() = 0;

virtual bool isPresent (raw::ChannellID_t channel) const = 0;
virtual bool isGood (raw: :ChannelID_t channel) const = 0;
virtual bool isBad (raw: :ChannelID_t channel) const = 0;
virtual bool isNoisy (raw::ChannellID_t channel) const = 0;
virtual ChannelSet_t GoodChannels () const = 0;

virtual ChannelSet_t BadChannels () const = 0;

virtual ChannelSet_t NoisyChannels () const = 0;

virtual bool Update (lariov::IOVTimeStamp consté& ts) = O;

}; // class filter::ChannelQuality

Listing 3: A stub of ChannelQuality interface

The art service would just return the service provider.

G. Petrillo (Rochester/FNAL) June 24t ,2015

Models

FHICL file model (implemented in LArSoft)
@ the service configuration contains all the channel information

@ information is moved by the constructor into internal structures
@ queries are replied with that local data
@ the content is never updated

@ the service configuration contains database connection directions
@ the service provider deals with the specific database structure

@ the service provider turns queries to the database;
caching is an implementation detail

@ the art service triggers content update on every new event

G. Petrillo (Rochester/FNAL) June 24t ,2015 8/11

Additional features

Optional features that can be implemented on demand:

@ legacy channelFilter class reproducing the old behaviour
(it will still require the new service to be configured)

@ iterators to channel IDs with specific quality (e.g. good)
© iterators to channel IDs with custom quality

© iterators to raw: :RawDigit (as for channel IDs)

@ interface extension to get channel quality as map of bits

o ..

G. Petrillo (Rochester/FNAL) June 24t ,2015

Backup

etrillo (Rochester/FNA June 24t , 2015 10/ 11

Additional bit-based interface

class filter::ChannelQuality {
public:
// the stuff above, plus:

constexpr size_t NBits = 32;
using ChannelBits_t = std::bitset<NBits>;

typedef enum {

cgNonPhysical, ///< no wire connected to the channel
cqgDead, ///< dead channel
cgNoisy, ///< noisy channel

cqCustomQualityStart = 16U ///< from this on: experiment-specific
} ChannelQuality_t;

virtual ChannelBits_t ChannelStatus
(raw: :ChannelID_t channel) const = 0;
virtual bool isChannel
(raw: :ChannelID_t channel, ChannelBits_t mask) const;

}; // class filter::ChannelQuality
Listing 4: Additional (optional) interface for bit-based quality

G. Petrillo (Rochester/FNAL June 241", 2015 11/11

	Appendix

