

Beam Line HOM Absorber Design design, tests, concerns

Outline

- Motivation
- HOM power
- Beam Line Absorber design
- Tests at FLASH Sept.2008 and 2009
- Thermal simulations and Thermal Connection to 40 K Tube
- Final Remarks

LCLS-II (SCRF) Baseline Parameters

Parameter	symbol	nominal	range	units
Electron Energy	E_{f}	4.0	2.0 - 4.14	GeV
Bunch Charge	Q_b	100	10 - 300	рС
Bunch Repetition Rate in Linac	f_b	0.62	0 - 0.93	MHz
Average e-current in linac	I_{avg}	0.062	0.0 - 0.3	mA
Avg. e- beam power at linac end	P_{av}	0.25	0 - 1.2	MW
Norm. rms slice emittance at undulator	$\gamma \mathcal{E}_{\perp -s}$	0.45	0.2 - 0.7	μ m
Final peak current (at undulator)	I_{pk}	1000	500 - 1500	A
Final slice E-spread (rms, w/heater)	$\sigma_{\!$	500	125 - 1500	keV
RF frequency	f_{RF}	1.3	-	GHz
Avg. CW RF gradient (powered cavities)	E_{acc}	16	-	MV/m
Avg. Cavity Q0	Q0	2.7e10	1.5 - 5e10	-
Photon energy range of SXR (SCRF)	E_{phot}	-	0.2 - 1.3	keV
Photon energy range of HXR (SCRF)	E_{phot}	-	1 - 5	keV
Photon energy range of HXR (Cu-RF)	E_{phot}	-	1 - 25	keV
		0401-14/		

240kW 0-1.2MW

Motivation

HOMs of the LCLS-II and XFEL cavity:

HOMs and Wakes in LCLS-II SC Linac: Steady-state losses

- In LCLS-II, HOM's generated by the beam will add to the power load, especially in the last linac (L3), where the peak current is highest.
- Ceramic absorber (between CMs , tied to 50K) \rightarrow to absorb propagating HOM power >85%
- The HOM power generated by the beam is $P^{\sim} Q^2 f_{rep}$. The nominal charge Q = 100 pC; however, the combination Q = 300 pC, $f_{rep} = 1$ MHz, will generate the highest HOM power
- The beam (Q = 300 pC, f_{rep} = 1 MHz) loses 7.7, 10.7, 13.8 W/CM in L1, L2, L3 (except for first two CMs)

- For a short bunch passing through a periodic structure, it takes on the order of the catch-up distance, $z_{cu}=a^2/2\sigma_z$, to reach the steady-state wake. For L3 taking $a = 3.5 \text{ cm } \& \sigma_z = 25 \mu \text{m}$, $z_{cu} = 25 \text{m}$
- When the beam enters the first CM of L3, the first cells loss factor is higher (see LCLS-II TN-13-04). In the first four CMs of L3 losses are: **29.5**, **14.5**, 13.8, 13.8 W
- Direct calculation of the transient wake is difficult to do because of the huge number of mesh points involved. However, G. Stupakov /SLAC has obtained the transient wake with Echo using scaling law.

Beam Line Absorber

Mechanical design

Estimated absorption efficiency for the periodic structure: one BLA/cryomodule is 83% (M. Dohlus)

HOM BLA Design

In-kind contribution PL01 for WP06

National Centre for Nuclear Research Świerk

High Order Modes Couplers and Beam Line Absorbers

BLA with protecting Al-bars after shipment to DESY.

Production: Spec for the ceramics:

- Heat conductivity at 40K > 50 W/(m*K)
- DC resistivity(across the cylinder) < 200M Ω at 70K

Measured absorption properties:

Ceradyne CA137 ϵ <30 @ tg δ > 0.1 for 5 GHz < f < 40 GHz

Sienna Technologies AlN STL-150D $\epsilon{<}30$ @ tg $\delta{>}$ 0.4 for 5 GHz < f < 12 GHz

Lossy Ceramics: Ceradyne Inc.

Properties of Ceradyne's Advanced Technical **Ceramics for Microwave Applications** Ceralloy® 13740 Ceralloy® 13740Y Ceralloy® 137 CD1 Ceralloy® 1370DP Grade Composition AIN-SIC AIN-SiC AIN Composite AIN Tailored Composition Available Yes Yes Yes Processing Route Hot Pressing Hot Pressing Hot Pressing Sintering Density (g/cm³) 3.19 3.19 2.993.26 Outgassing No No No No Thermal Conductivity 30 53 170-190 95-105 (W/mK)(RT)Dielectric Constant @1.0GHz 22 30 8.7 @8.0GH7 15 22 38 @10.0GHz 15 21 31 @12.0GHz 27 Loss Tangent @1.0GHz 0.11 0.002 0.11 0.45 @8.0GH7 0.3 0.3 @10.0GHz 0.28 0.28 0.4 @12.0GHz 0.5 Thermal Expansion 5.1 5.1 6.2 5.0 Coefficient x10⁻⁶/C (RT - 1000°C) Flexural Strength (MPa) 300 300 190 260 Key Features Higher Thermal Thermal Conductivity Conductivity than Ceralloy Equal to BeO @ 2710 @ Temperatures Temperatures of about >150°C. Close Match in 200°C. Electrical Properties Applications Replacement for Replacement for Replacement for Replacement for Cerallov 2710 BeO-SiC. Cerallov 2710 BeO-SiC. Cerallov 2710 BeO-SiC. 99.5 BeO, Collectors. Terminations. Sever Terminations, Sever Terminations. Sever Collector Rods. Wedges, Load Pellets, Wedges, Load Pellets, Wedges, Load Pellets, Helix Support Rods. Absorbers Absorbers Absorbers Windows

Ceradyne CA137

We used λ =70W/m·K in our modeling, Will be redone with actual T dependence

CERADYNE does not produced the rings anymore (Jacek)

Lossy Ceramics:

STL-100 and STL-150D AIN LOSSY DIELECTRIC PROPERTIES

	STL-100	STL-150D
Composition	AIN - SiC (Composite)	AIN (Doped)
Density, g/cm ³	3.25	3.28
Outgassing	No	No
Thermal Conductivity, W/m•K	90±10	120±10
Thermal Expansion Coefficient, X10 ⁻⁶ /°C	5.5	4.0
Dielectric Constant 2 GHz 4 GHz 6 GHz 8 GHz 10 GHz 12 GHz	42 38 36 33 32 31	35 29 26 24 22 21
Loss Tangent 2 GHz 4 GHz 6 GHz 8 GHz 10 GHz 12 GHz	0.20 0.24 0.29 0.31 0.32 0.32	0.41 0.44 0.46 0.48 0.50 0.44
Flexural Strength, MPa	500	300
Elastic Modulus, GPa	350	325
Hardness, GPa	12	12
Application	Lossy Dielectric replacement for BeO- SiC composites, HOM Absorbers, Severes, Terminations, Wedges	Lossy Dielectric replacement for BeO- SiC composites, HOM Absorbers, Severes, Terminations, Wedges
Additional Attributes	Properties can be tailored by changing composition.	Properties can be tailored by changing composition. Maintains loss characteristics at cryogenic temperatures to 2 K.

STL-100 and STL-150D ALUMINUM NITRIDE LOSSY DIELECTRICS

Aluminum nitride (AIN) based lossy dielectrics are drop-in replacements for berylliasilicon carbide (BeO-SiC) composite lossy dielectrics at a more economical cost and without the potential toxicity concerns.

Sienna STL-100 and STL-150D AIN lossy dielectrics offer:

- Custom tailorable dielectric properties to meet application specific requirements
- Temperature independent loss characteristics (STL-150D)
- Thermal conductivity that is comparable to BeO-SiC composites
- No out-gassing in vacuum
- High mechanical strength

These attributes make Sienna STL-100 and STL-150D AIN lossy dielectrics the best choice as high performance microwave absorber applications including:

- HOM Absorbers in Accelerators
- Absorbers, Severes, Terminations, and Wedges in Vacuum Electron Devices (microwave tubes)
- Loss Loads

Sienna's technical team is ready to help you implement Aluminum Nitride in your next generation of products.

Contact us for applications assistance and fast prototyping.

Wakefield power losses in CM models

- Ray Tracing (diffusion) model M. Dohlus
- Scattering matrix approach K. Bane/ G.Stupakov
- Simple Analytical Estimation using diffusion approach.(V.Yakovlev / A.Saini)

$$I_i^{abs} \sim n_i S_i \int P_0(\omega) \operatorname{Re}(Z_i(\omega) d\omega)$$

coarse models: photon tracking

Distribution of power losses in CM (diffusion model)

Distribution of power losses in CM

	P _{cav} (W)	P _{bellow} (W)	P _{absorb} (W)
Cu bellow	0.07	0.76	13.0
SS bellow	0.03	7.6	6.2
			A.Saini

- Power dissipation at 2K (inside the cavity) is negligible.
- Most of HOM power is deposited to absorber in case of copper bellow.
- For SS below ~50% of HOM power is absorbed in bellows.

Q: How HOM power generated in transition CM are distributed along the string of CMs? → averaged over string.

absorber 1

CM Interconnect Review, July29, 2015

S-matrix model (K.Bane, SLAC)

At a number of discrete frequencies, 4, 8, 12, 16, 20 and 40 GHz, we used the field solver to calculate the scattering matrix for each element type (cavity, bellows, drifts and absorber) for all TMOn monopole modes propagating in the beam pipe at each respective frequency

Table 1. Fercent of Ontrapped HOM Fower to 2 K.	Table 1.	Percent	of Untrapped	l HOM	Power	to 2 K.
---	----------	---------	--------------	-------	-------	---------

f (CHz)	Copp	er	Stainless Steel		
<i>)</i> (Onz) -	S-matrix	diffusion	S-matrix	diffusion	
4	0.75	0.35	19	13	
8	3.5	0.55	49	18	
12	0.5	0.70	23	21	
16	0.55	0.85	10	24	
20	1.1	1.0	47	26	
40	1.1	1.6	35	33	
Total		2.7	ļ	39	

Radial geometries of the cavity, bellows and absorber with field plots (|E| for cavities; |H| for others) from HFSS simulations at 4 GHz and 20 GHz, with TM01 input from the left.

Conclusion: Two complementary approaches provide confidence in the effectiveness of the beamline HOM absorbers. Only a few percent HOM power will be lost at 2K.

Test Setup at FLASH

2 Beam Tests in September 2008 and 2009

Computer modeling for the location of BLA (*M. Dohlus*):

15% of the HOM power should be absorbed in the BLA (?)

High current run at TTF-II in 2008

1.4

Braid cross-section (Cu OFH)= 74mm² Heat conductance of the braid :

$$\kappa = 1250 \frac{W}{m \cdot K} \cdot \frac{74.4 \cdot 10^{-6} m^2}{0.7 m} = 0.13 \frac{W}{K}$$

9 mA run in 2009

Measured and calculated absorbed power in two tests

	Sept.08	Sept.09
Computed Absorbed Power [W]	0.180	0.255
Measured Absorbed Power [W]	0.143 (-20%)	0.325 (+27%)

Accuracy of measurements? Accuracy of simulation?

Thermal connection Beam Absorber design (XFEL)

Figure 2: Layout of the beam line absorber.

Figure 3: parts of the BLA prototype: (left) damping ceramic ring welded to the copper stub and (right) housing made of stainless-steel.(*Courtesy of J.Sekutowicz*)

Thermal connection made of a copper stub, terminated on each end with short braid, eliminating mechanical forces during the cool down and warm up cycles.

- With XFEL proposed thermal connection (S \sim 3 cm²) for 3W T_c=59 K when the He tube is at 50 K.
- For 30 W (max in 1st CM in L3) dissipated HOM power the highest temperature of the ceramic ring = 230 K → will be improve for LCLS-II CM.
- Remaining design issues:
 - Larger cross-section of stub? => 4-5 cm²
 - Weight = 21 kg. Need support?

Thermal simulations

- Maximum power dissipation ~30W (1st CM in L3) → Should be ~15 W/CM average ?
- Proposed copper stub cross-section ~4-5cm² will provide T ceramics < 150 K
- Thermal stresses analysis (I.Gonin):
 - Max stresses at Cu-Ceramic brazing joint, acceptable for P<30W

Modeling by T. Ramm showed that thermal connection is not a trivial part of the BLA.

It is rather complicated due to very limited space between cryomodules.

Supporting HOM Absorber

XFEL proposal for support

Status of the HOM beamline Absorber

LCLS-II adopted Eu-XFEL HOM Absorber design:

- Capable to absorb up to 100W of HOM power with spectrum > 1THz
- High Absorbing efficiency > 85%.
- R&D program and several design iteration since TESLA era.
- Industrial studies for XFEL, improvements on absorbing materials, brazing, cleaning.
- Tested with beam at FLASH (2008/2009); good agreement with simulation
 - Minor issues (cleaning, support in CM, thermal straps) will be finalized. Work in collaboration with XFEL team.

Procurement (JLAB):

Permission from DESY to use HOM absorber design received

Technical information and quotation from vendor (INS-Swierk in Poland)

- Drawings, specs, cleaning and QA/QC docs.
- Quotation for 1 and 35 units.

Ready to start procurement for series production (35 units)

Remarks

- HOM Beamline Absorber design for LCLS-II project is based on tested design, developed for a decades and modified for XFEL. Parameters meet LCLS-II requirements.
- LCLS-II CW operation produces high cryogenic losses. It requires good thermoconnections to remove heat and keep temperature under control. Thermal simulations in progress to define losses and finalize configuration of the thermal braids and connections.
- Design Concerns:
 - Ceramics loss tangent was measured up to 40 GHz. No data for higher frequencies, where major HOM power is expected.
 - Diameter of ceramic ring is parameter for optimization of efficiency
 - Braid cross-section is defined by L3 HOM power level. Can be reduced in L1 and L2, where power level is smaller.
- Design Concerns (based on production experience, see Jacek slides in appendix):
 - Permeability (μ r<1.16)
 - Copper plating and adhesion
 - Cleaning issues

Thanks

Jacek Sekutowicz and Martin Dohlus for provided materials

Fermilab, JLAB and SLAC team

Ivan Gonin, Timergali Khabiboulline, Andrei Lunin, Slava Yakovlev, Arun Saini, Tug Arkan, Yuri Orlov for help with simulations, design and discussiom

Back-up slides

Slides fro Jacek Sekutowicz presentation at SLAC

DESY Experience and concerns

Vacuum

All BLAs undergo leak test, performed by the vendor. 84 of 85 produced BLAs have passed this acceptance test.

One would expect that the vacuum oven brazing of ceramic ring to Cu-stub at 950 C and Cu-stub to Stainless Steel at 1050 C

and the Cu-coated housing heat treatment in 450C (1h) should make BLAs very clean. This is not the case and an additional cleaning is performed at DESY. It is very time consuming and not always successful. There is mainly a problem with masses 40-100. The partial pressures are rather factor of 100 than factor of 1000 smaller than the total pressure.

Experience and concerns

Vacuum, cont.

Spec for Stainless Steel

- For flanges 316LN SS ESR (1.4429)
- Housing and bellows 316LN (1.4435)

Vacuum spec:

- No outgassing from ceramics (accordingly to the material properties description by vendors)
- The integral leak rate has to be $\leq 1.10^{-10}$ mbar·l·sec⁻¹

To ensure that BLA is hydrocarbons free, two conditions have to be fulfilled for the outgassing:

- For a total pressure of 10⁻⁷ mbar
- The sum of all partial pressures of masses from 45 to 100 must be less than 10⁻³ of the total pressure.

Permeability spec:

 $\mu_r \le 1.05$ later less conservative 1.16

Experience and concerns, cont.

Permeability

Good adhesion of the Cu-coating requires an interlayer of Nickel.

- The 1st delivery had this layer of the order of 3+μm, adhesion was very good but the thick Ni layer made permeability, μ_r, significantly ≥ 1.05. All with μ_r > 1.16 have been sent back for re-coating.
- 2. DESY requested to keep $\mu_r \le 1.16$ (much less conservative value). The thickness of Ni layer was reduced to ca. 1µm. These BLAs had still good adhesion and $\mu_r \le 1.12$.
- Then the thickness of Ni layer has been reduced second time to 0.3-0.7μm(??). μ_r dropped below 1.04, but adhesion was poor in convolutions of bellows, peeling off was observed in many BLAs.

Experience and concerns Permeability, cont.

Poor adhesion observed at DESY, on January 30th and on April 2nd, 2015

All these BLAs have been sent back to vendor for re-coating. These which were sent back to DESY have good adhesion and low μr .

- ✓ In two tests we observed absorption of the high frequency HOMs
 ✓ The amount of HOM power was close to the calculated power
- ✓ Cleaning is still time consuming
- \checkmark Issue with adhesion and μr seems to be solved

Linac RF and Compression

Lina c Sec.	V 0 (MV)	φ (deg)	Acc. Grad.* (MV/m)	No. Cryo Mod's	No. Avail. Cav's	Spare Cav's	Cav's per Amp.	
LO	100	**	16.3	1	8	1	1	
L1	211	-12.7	13.6	2	16	1	1	
HL	-64.7	-150	12.5	2	16	1	1	
L2	1446	-21.0	15.5	12	96	6	48	
L3	2206	0	15.7	18	144	9	48	
Lf	202	±34	15.7	2	16	1	1	

See PRD:

LCLSII-2.4-PR-0041

* <u>Nom</u>. crest grads. averaged over powered cavities (worst phasing requires 16 MV/m)

** L0 cav. phases: ~(3°, -15°, 0, 0, 0, 0, 15°, 0), with cav1 at 70% & cav2 at 21% of cav-3-7 grads.

April 24, 2014 – P. Emma (100 MeV injector, 150- μ m bunch length after BC1, -37-mm BC2 R_{56})