

NATURALNESS AND DATA

Top partner limits constrain natural scenarios.

BRINGING DOWN THE CUTOFF

Gravity sees all degrees of freedom.

$$M_{\rm pl}^2(\mu) = M_{\rm pl}^2(0) - N \frac{\mu^2}{96 \pi^2}$$

$$\Lambda_{
m UV} \sim rac{M_{
m pl}(0)}{\sqrt{N}}$$

Larsen, Wilczek [arXiv:hep-th/9506066]; Calmet, Gong, Hsu [arXiv:0806.4605]

A RANDOM COPY

For simplicity:
Only variation away
from our Standard
Model is Higgs mass
parameter.

$$-\Lambda_{\rm UV}^2 \lesssim \left(m_H^2\right)_i \lesssim \Lambda_{\rm UV}^2$$

NCOPIES

Hierarchy problem:

But why is there energy density in only our sector?!?

OUTLINE

General Mechanism

Two Simple Models

Signatures!

Unlikely to have time, please see slides online!

Completing the Story

Outlook

GENERAL MECHANISM

JUST A SIGN

$$m_H^2 > 0$$

$$m_H^2 < 0$$

- Massless photon
- \bullet W^{\pm} , Z^0 masses $\sim \Lambda_{
 m QCD}$
- Fermion masses

$$\sim y_f \frac{\Lambda_{\rm QCD}^3}{m_H^2}$$

- $T_{\rm sphaleron} < \Lambda_{\rm QCD}$: no baryon relic density
- No baryon relic density

- Massless photon
- W^{\pm} , Z^0 , and fermion masses $\sim v$
- Neutrino masses:
 - Majorana mass $\sim v^2$
 - Dirac mass $\sim v$

THE REHEATON

S reheats the Universe after inflation.

Couples universally to all copies.

COUPLE S TO H + X

$$m_H^2 > 0$$

$$m_H^2 < 0$$

SIMPLEST SCENARIO

Even spacing for Higgs mass squared parameters:

$$\left(m_H^2\right)_i = i \times \left(m_H^2\right)_{\text{us}}$$

So that
$$v_i \sim \sqrt{i}$$
 .

DOMINANT SIGNATURES

Energy density in additional relativistic degrees of freedom.

$$N_{
m eff} \sim rac{\sum\limits_{i
eq
m us}
ho_i}{
ho_{
m us}} \sim rac{\sum\limits_{i
eq
m us} \Gamma_i}{\Gamma_{
m us}} \sim \log N$$

Relic density of additional neutrinos.

$$\Omega_{
u}h^2 \sim \left\{ egin{array}{ll} rac{\sum\limits_{i
eq \mathrm{us}} v_i \,
ho_i^{3/4}}{v_{\mathrm{us}} \,
ho_{\mathrm{us}}^{3/4}} \sim N^{3/4} & \mathrm{Dirac} \ rac{\sum\limits_{i
eq \mathrm{us}} v_i^2 \,
ho_{\mathrm{us}}^{3/4}}{v_{\mathrm{us}}^2 \,
ho_{\mathrm{us}}^{3/4}} \sim N^{5/4} & \mathrm{Majorana} \end{array}
ight.$$

HOW MANY COPIES?

Full hierarchy problem

$$v_{
m us} \sim rac{\Lambda_{
m UV}}{\sqrt{N}}$$
 and $\Lambda_{
m UV} \sim rac{M_{
m Pl}}{\sqrt{N}}$

$$N \sim \frac{M_{\rm Pl}}{v_{\rm us}} \simeq 10^{16}$$

and

$$\Lambda_{\rm UV} \sim 10^{10}~{\rm GeV}$$

HOW MANY COPIES?

Little hierarchy problem

$$v_{
m us} \sim rac{\Lambda_{
m SUSY}}{\sqrt{N}}$$
 and $\Lambda_{
m UV} \sim rac{M_{
m Pl}}{\sqrt{N}}$ + $\Lambda_{
m UV} \sim M_{
m GUT}$

$$N \sim 10^4$$
 Tons of signatures
$$\Lambda_{\rm SUSY} \sim 10~{\rm TeV}$$
 at future colliders!

TWO SIMPLE MODELS

$$\mathcal{L} = m_S S S^c + \lambda \sum_i S H_i L_i$$

$$m_H^2 > 0$$

$$m_H^2 < 0$$

NEUTRINO REHEATON

TOY SCENARIO

Parametrize distribution of Higgs masses:

$$\left(m_H^2\right)_i = \frac{1}{r} \times i \times \left(m_H^2\right)_{\text{us}}$$

NEUTRINO REHEATON

μ -PROBLEM

Reheaton mass is technically natural.

Critical that reheaton mass be $\mathcal{O}(m_{w_{\mathrm{us}}})$.

Analogous to μ -problem in the MSSM.

22

SCALAR REHEATON

$$\mathcal{L} = \frac{1}{2} m_{\phi} \phi^2 + a \phi \sum_{i} |H_i|^2$$

$$m_H^2 > 0$$

$$m_H^2 < 0$$

SIGNATURES!

$N_{ m eff}$

CMB Stage IV: future constraint on $N_{\rm eff} \lesssim 0.02$. Also constrain $\sum m_{\nu_i}$ to SM value.

Wu, et al. [arXiv:1402.4108]

NEUTRINO OVERCLOSURE

$$\mathcal{L} = m_S \, S \, S^c + \lambda \sum_i S \, H_i \, L_i$$

From decays, thermal abundances, production from our \mathbb{Z}^0 boson.

POWER AT SMALL SCALES

Potentially observable imprint on small scale power spectrum of cosmological perturbations.

GETTING TO $N=10^{16}$

$$\mathcal{L} = \frac{1}{2} m_{\phi} \phi^2 + a \phi \sum_{i} |H_i|^2$$

RARE DECAYS

Observable in HL-LHC, tera-Z, 100 TeV pp?

Potentially see rate change by sending more energy through propagator to access more sectors!

COMPLETING THE STORY

REHEAT TEMPERATURE

$$T_{\rm rh} \sim \sqrt{\Gamma_{\rm reheaton} \, M_{
m pl}}$$

Set by size of reheaton - Higgs coupling.

Constrained to be $\lesssim m_{W_{\rm us}}$.

 $T \sim |m_H|$ in other sectors changes predictions. Leads to larger reheaton branching ratios into $i \neq \mathrm{us}$.

[Tension can be alleviated by preheating.]

BARYOGENESIS

Low reheat temperature: not all standard mechanisms work.

ONE OPTION

Primordial lepton asymmetry.
Only converted to baryons for sectors

with $T > T_{\rm sphaleron} \sim m_W$.

STRONG CP

Assume only breaking of \mathbb{Z}_2 is from m_H^2 , common axion to all sectors.

Same effective θ_{CP} for all sectors. Axion gets contribution to mass from every Λ_{QCD} . Larger m_a as function of f.

DARK MATTER

MANY OPTIONS

Thermal relic (neutralino in SUSY scenario?)

Neutrinos from other sectors

Axion

Superpartner of reheaton

• • •

OUTLOOK

DYNAMICALLY REALIZING N

 $\langle \bigcirc_i \rangle \neq 0$ \longrightarrow Extra dimension (deconstruction)

$$\langle \bigcirc_i \rangle = 0$$

Large number of dof's

[U of OREGON] TIM COHEN

CONCLUSIONS

Novel solution to big/little hierarchy problem.

Many simple models exist.

Success relies on cosmology.

Constrained by $N_{
m eff}$ and neutrino over closure.

Rare Z^0 and h decays.

Observe "steps" in primordial power spectrum.