Effective theories for heavy WIMP dark matter

RICHARD HILL
U. Chicago,TRIUMF, Perimeter Institute,

Higgs Effective Theory Workshop 4 November, 2015
based on work with M.P. Solon: (Sakurai thesis award)
Heavy WIMP Effective Theory I I I I.00 I 6, I 309.4092, PRL
Standard Model Anatomy of WIMP Direct Detection I, II I 40 I.3339, I 409.8290, PRD
and work with M. Bauer, T. Cohen and M.P. Solon
SCET for Heavy WIMP Annihilation I 409.7392, JHEP

Thanks to co-organizers and participants of MITP program "Effective Theories and Dark Matter", March 2015:
for many other applications of EFT and DM:
https://indico.mitp.uni-mainz.de/conferenceDisplay.py?ovw=True\&confld=25

focus on 3 problems

- WIMP scattering + high-scale matching: Heavy WIMP Effective Theory (HWET)
- WIMP scattering + collider production, connecting weak scale to hadronic scale: heavy quark decoupling
- WIMP annihilation: HWET+Soft Collinear Effective Theory

Not quibbling about percents (example I: heavy WIMP scattering)

Not quibbling about percents (example I: heavy WIMP scattering)

Not quibbling about percents (example I: heavy WIMP scattering)

Not quibbling about percents (example 2: light WIMPs)
DM complementarity: connect direct detection and collider phenomenology

$$
\mathcal{L}_{\chi, \mathrm{SM}}=\bar{\chi} \chi\left[b_{u} \bar{u} u+b_{d} \bar{d} d\right]
$$

four-fermion interactions constrained by collider bounds on missing energy signatures

Not quibbling about percents (example 2: light WIMPs)

DM complementarity: connect direct detection and collider phenomenology

$$
f_{n} / f_{p} \approx-Z /(A-Z) \approx-0.7
$$

engineered to reconcile DAMA with results from Xe and other nuclei

$$
\mathcal{L}_{\chi, \mathrm{SM}}=\bar{\chi} \chi\left[b_{u} \bar{u} u+b_{d} \bar{d} d\right]
$$

Not quibbling about percents (example 2: light WIMPs)
DM complementarity: connect direct detection and collider phenomenology

$$
f_{n} / f_{p} \approx-Z /(A-Z) \approx-0.7
$$

engineered to reconcile DAMA

$$
\text { with results from } X e \text { and other }
$$

nuclei

Solution: $b_{u} / b_{d}=-0.9$
However, must account for uncertainties (hadronic and renormalization scale)

Not quibbling about percents (example 2: light WIMPs)
DM complementarity: connect direct detection and collider phenomenology

$f_{n} / f_{p} \approx-Z /(A-Z) \approx-0.7$ engineered to reconcile DAMA with results from Xe and other nuclei

Solution: $b_{u} / b_{d}=-0.9$
However, must account for uncertainties (hadronic and renormalization scale)

Not quibbling about percents (example 2: light WIMPs)
DM complementarity: connect direct detection and collider phenomenology

$$
f_{n} / f_{p} \approx-Z /(A-Z) \approx-0.7
$$

engineered to reconcile DAMA with results from Xe and other nuclei
cf. $b_{d} / b_{d}=-1.08$ from "isospin-violating" DM
Assumed one-to-one mapping between b_{u} / b_{d} and f_{n} / f_{p} invalid
Nontrivial mapping from colliders to direct detection

Not quibbling about percents (example 3: heavy WIMP annihilation) $10^{-2 .}$
10^{-24}

 $\begin{array}{llll} & 2 & 4 & 6 \\ \text { one loop } & & M[\mathrm{TeV}] & 8 \\ & & \text { one loop, } \text { neglect }\end{array}$
wavefunction enhancement
Multi-scale field theory problem, breakdown of naive perturbation theory

Not quibbling about percents (example 3: heavy WIMP annihilation)

Multi-scale field theory problem, breakdown of naive perturbation theory

- WIMP scattering + high-scale matching: Heavy WIMP Effective Theory (HWET)
- WIMP scattering + collider production, connecting weak scale to hadronic scale: heavy quark decoupling
- WIMP annihilation: HWET+Soft Collinear Effective Theory

Mechanisms versus models

Electroweak charged WIMP Mechanism versus WIMP Model

Focus on self-conjugate $\operatorname{SU}(2)$ triplet. Could be:

- SUSY wino
-Weakly Interacting Stable Pion
- Minimal Dark Matter

Basic idea:

We are all familiar with Heavy Particle Symmetry

To leading order in $p / M_{\text {proton }}$ the electron doesn't know about details of the nucleus beyond its charge

$$
H_{\text {Hydrogen }}=H_{\text {Deuterium }}=\frac{p^{2}}{2 m_{e}}-\frac{\alpha}{r}
$$

Apply Heavy WIMP Symmetry to provide absolute predictions for dark matter observables

Present null results of direct detection and collider searches may indicate large WIMP mass scale

Present null results of direct detection and collider searches may indicate large WIMP mass scale

If WIMP mass $M \gg m_{w}$, isolation ($M^{\prime}-M \gg m_{w}$) becomes generic. Expand in $m w / M, m_{w} /\left(M^{\prime}-M\right)$ Large WIMP mass regime is a focus of future experiments in direct, indirect and collider probes

Present null results of direct detection and collider searches may indicate large WIMP mass scale

If WIMP mass $M \gg m_{w}$, isolation ($M^{\prime}-M \gg m_{w}$) becomes generic. Expand in $m w / M, m_{w} /\left(M^{\prime}-M\right)$
Large WIMP mass regime is a focus of future experiments in direct, indirect and collider probes

Present null results of direct detection and collider searches may indicate large WIMP mass scale

If WIMP mass $M \gg m_{w}$, isolation ($M^{\prime}-M \gg m_{w}$) becomes generic. Expand in $m w / M, m_{w} /\left(M^{\prime}-M\right)$
Large WIMP mass regime is a focus of future experiments in direct, indirect and collider probes

"SM anatomy" of interactions between weak and hadronic scales

Start here: (e.g. fermion or composite boson UV completion)

$$
\left.\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2} \overline{\tilde{w}}(i \not D-M) \tilde{w} \quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{4}\left(\hat{A}_{\mu \nu}^{a}\right)^{2}+\bar{\psi}(i \not \partial)+\hat{g} \hat{A}+g_{2} W\right) \psi
$$

End up here

$$
\mathcal{L}=N^{\dagger}\left(i \partial_{t}+\frac{\partial^{2}}{2 m_{N}}\right) N+\chi^{\dagger}\left(i \partial_{t}+\frac{\partial^{2}}{2 M}\right) \chi+c_{\text {SI }} N^{\dagger} N \chi^{\dagger} \chi+\ldots
$$

Start here: (e.g. fermion or composite boson UV completion)
$\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2} \overline{\tilde{w}}(i \not D-M) \tilde{w} \quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{4}\left(\hat{A}_{\mu \nu}^{a}\right)^{2}+\bar{\psi}\left(i \not \partial+\hat{g} \hat{A}+g_{2} W\right) \psi$

Fill in here

End up here

$$
\mathcal{L}=N^{\dagger}\left(i \partial_{t}+\frac{\partial^{2}}{2 m_{N}}\right) N+\chi^{\dagger}\left(i \partial_{t}+\frac{\partial^{2}}{2 M}\right) \chi+c_{\mathrm{SI}} N^{\dagger} N \chi^{\dagger} \chi+\ldots
$$

"SM anatomy" of interactions between weak and hadronic scales

Heavy particle symmetry and weak-scale matching

12 operators (classified as spin- 0 and spin- 2) and 12 coefficients

$$
\mathcal{L}_{\phi_{0}, \mathrm{SM}}=\frac{1}{m_{W}^{3}} \phi_{v}^{*} \phi_{v}\left\{\sum_{q}\left[c_{1 q}^{(0)} O_{1 q}^{(0)}+c_{1 q}^{(2)} v_{\mu} v_{\nu} O_{1 q}^{(2) \mu \nu}\right]+c_{2}^{(0)} O_{2}^{(0)}+c_{2}^{(2)} v_{\mu} v_{\nu} O_{2}^{(2) \mu \nu}\right\}+\ldots
$$

Besides universality, Heavy WIMP Effective Theory Feynman rules drastically simplifiy integrals:

Benchmarks: pure states

- WIMP scattering + high-scale matching: Heavy WIMP Effective Theory (HWET)
- WIMP scattering + collider production, connecting weak scale to hadronic scale: heavy quark decoupling
- WIMP annihilation: HWET+Soft Collinear Effective Theory

Dark matter - Standard Model interactions

$$
\mathcal{L}=\frac{1}{\Lambda^{n}} O_{\mathrm{DM}} \times O_{\mathrm{SM}}
$$

d	Fermion	d	Scalar	d	Heavy particle
3	$\bar{\psi}\left[1, i \gamma_{5}, \gamma^{\mu} \gamma_{5},\left\{\gamma^{\mu}, \sigma^{\mu \nu}\right\}\right] \psi$	2	$\|\phi\|^{2}$	3	$\bar{\chi}_{v}\left[1,\left\{\sigma_{\perp}^{\mu \nu}\right\}\right] \chi_{v}$
4	$\bar{\psi}\left[\left\{1, i \gamma_{5}, \gamma^{\mu} \gamma_{5}\right\}, \gamma^{\mu}, \sigma^{\mu \nu}\right] i \partial_{-}^{\rho} \psi$	3	$\left\{\phi^{*} i \partial_{-}^{\mu} \phi\right\}$	4	$\bar{\chi}_{v}\left[\{1\}, \sigma_{\perp}^{\mu \nu}\right] i \partial_{\perp-}^{\rho} \chi_{v}$

d	QCD operator basis
3	$V_{q}^{\mu}=\bar{q} \gamma^{\mu} q$
4	$A_{q}^{\mu}=\bar{q} \gamma^{\mu} \gamma_{5} q$
	$T_{q}^{\mu \nu}=i m_{q} \bar{q} \sigma^{\mu \nu} \gamma_{5} q$
	$O_{q}^{(0)}=m_{q} \bar{q} q, \quad O_{g}^{(0)}=G_{\mu \nu}^{A} G^{A \mu \nu}$
$O_{q}^{(2) \mu \nu}=\frac{1}{2} \bar{q}\left(\gamma^{\{\mu} i D_{-}^{\nu\}}-\frac{g^{\mu \nu}}{4} i \not D D_{-}\right) q, \quad O_{g}^{(2) \mu \nu}=-G^{A \mu \lambda} G^{A \nu}+\frac{g^{\mu \nu}}{4}\left(G_{\alpha \beta}^{A}\right)^{2}$	
$O_{5 q}^{(2) \mu \nu}=\frac{1}{2} \bar{q} \gamma^{\{\mu} i D_{-}^{\nu\}} \gamma_{5} q$	

complete
QCD basis for $\mathrm{d} \leq 7$

Renormalization: (focus on ops relevant to heavy WIMPs)

$$
\begin{gathered}
\mathcal{L}_{\phi_{0}, \mathrm{SM}}=\frac{1}{m_{W}^{3}} \phi_{v}^{*} \phi_{v}\left\{\sum_{q}\left[c_{1 q}^{(0)} O_{1 q}^{(0)}+c_{1 q}^{(2)} v_{\mu} v_{\nu} O_{1 q}^{(2) \mu \nu}\right]+c_{2}^{(0)} O_{2}^{(0)}+c_{2}^{(2)} v_{\mu} v_{\nu} O_{2}^{(2) \mu \nu}\right\}+\ldots \\
m_{q} \bar{q} q
\end{gathered}
$$

focus on spin-0 (evaluate spin-2 at weak scale)

$$
\left\{\begin{array}{l}
\left\langle\theta_{\mu}^{\mu}\right\rangle=m_{N}=\left(1-\gamma_{m}\right) \sum_{q=u, d, s, \ldots}^{n_{f}}\left\langle O_{q}^{(0)}\right\rangle+\frac{\tilde{\beta}}{2}\left\langle O_{g}^{(0)}\right\rangle \\
\left\langle O_{i}^{\prime(S)}\right\rangle\left(\mu_{h}\right)=R_{j i}^{(S)}\left(\mu, \mu_{h}\right)\left\langle O_{j}^{(S)}\right\rangle(\mu) \\
\frac{2}{\tilde{\beta}(\mu)} R_{g g}=\frac{2}{\tilde{\beta}\left(\mu_{h}\right)}, \quad R_{q g}-\frac{2}{\tilde{\beta}(\mu)}\left[1-\gamma_{m}(\mu)\right] R_{g g}=-\frac{2}{\tilde{\beta}\left(\mu_{h}\right)}\left[1-\gamma_{m}\left(\mu_{h}\right)\right]
\end{array}\right.
$$

$$
R\left(\mu, \mu_{h}\right)=\left(\begin{array}{ccc|c}
1 & & & R_{q g} \\
& \ddots & & \vdots \\
& & 1 & R_{q g} \\
\hline 0 & \cdots & 0 & R_{g g}
\end{array}\right)
$$

Quark threshold matching: $\quad c_{i}\left(\mu_{Q}\right)=M_{i j}\left(\mu_{Q}\right) c_{j}^{\prime}\left(\mu_{Q}\right)$.

$$
M\left(\mu_{Q}\right)=\left(\begin{array}{cc|c|c}
& & M_{q Q} & M_{q g} \\
\mathbb{1}\left(M_{q q}-M_{q q^{\prime}}\right)+\downharpoonleft M_{q q^{\prime}} & \vdots & \vdots \\
& & M_{q Q} & M_{q g} \\
\hline M_{g q} & \cdots & M_{g q} & M_{g Q}
\end{array} M_{g g}\right)
$$

$$
\begin{aligned}
& \left\{\left\langle\theta_{\mu}^{\mu}\right\rangle=m_{N}=\left(1-\gamma_{m}\right) \sum_{q=u, d, s, \ldots}^{n_{f}}\left\langle O_{q}^{(0)}\right\rangle+\frac{\tilde{\beta}}{2}\left\langle O_{g}^{(0)}\right\rangle\right. \\
& \left\langle O_{i}^{\prime(S)}\right\rangle\left(\mu_{b}\right)=M_{j i}^{(S)}\left(\mu_{b}\right)\left\langle O_{j}^{(S)}\right\rangle\left(\mu_{b}\right)+\mathcal{O}\left(1 / m_{b}\right) . \\
& 0=\tilde{\beta}^{\left(n_{f}\right)}-\tilde{\beta}^{\left(n_{f}+1\right)} M_{g g}-2\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right]\left(M_{g Q}+n_{f} M_{g q}\right), \\
& 0=2\left\{1-\gamma_{m}^{\left(n_{f}\right)}-\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right]\left(M_{q Q}+M_{q q}+\left(n_{f}-1\right) M_{q q^{\prime}}\right)\right\}-\tilde{\beta}^{\left(n_{f}+1\right)} M_{q g}
\end{aligned}
$$

Notice that:

$$
M_{q q} \equiv 1, \quad M_{q q^{\prime}} \equiv 0, \quad M_{g q} \equiv 0
$$

Remaining relations are determined by sum rule in terms of M_{gQ} and M_{qQ}

$$
M_{g g}=\frac{\tilde{\beta}^{\left(n_{f}\right)}}{\tilde{\beta}^{\left(n_{f}+1\right)}}-\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right] M_{g Q}
$$

$M_{g q}=\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[\gamma_{m}^{\left(n_{f}+1\right)}-\gamma_{m}^{\left(n_{f}\right)}\right]-\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right] M_{q Q}$
M_{gQ} and M_{qQ} known through 3 loops:

Chetyrkin et al. (I 997)
New results for gluon-induced decoupling relations

$$
M_{g g}^{(2)}=\frac{11}{36}-\frac{11}{6} \log \frac{\mu_{Q}}{m_{Q}}+\frac{1}{9} \log ^{2} \frac{\mu_{Q}}{m_{Q}}
$$

$$
M_{g g}^{(3)}=\frac{564731}{41472}-\frac{2821}{288} \log \frac{\mu_{Q}}{m_{Q}}+\frac{3}{16} \log ^{2} \frac{\mu_{Q}}{m_{Q}}-\frac{1}{27} \log ^{3} \frac{\mu_{Q}}{m_{Q}}-\frac{82043}{9216} \zeta(3)
$$

$$
+n_{f}\left[-\frac{2633}{10368}+\frac{67}{96} \log \frac{\mu_{Q}}{m_{Q}}-\frac{1}{3} \log ^{2} \frac{\mu_{Q}}{m_{Q}}\right]
$$

$$
M_{q 9}^{(2)}=-\frac{89}{54}+\frac{20}{9} \log \frac{\mu_{Q}}{m_{Q}}-\frac{8}{3} \log ^{2} \frac{\mu_{Q}}{m_{Q}}
$$

Hill, Solon (2014)
scalar matrix element of nucleon:

$$
\begin{aligned}
f_{c, N}^{(0) \prime} & =0.083-0.103 \lambda+\mathcal{O}\left(\alpha_{s}^{4}, 1 / m_{c}\right)=0.073(3)+\mathcal{O}\left(\alpha_{s}^{4}, 1 / m_{c}\right) \\
f_{q, N}^{(0) \prime} & =f_{q, N}^{(0)}+\mathcal{O}\left(1 / m_{c}\right)
\end{aligned}
$$

New result for heavy quark

Remaining relations are determined by sum rule in terms of M_{gQ} and M_{qQ}

$$
M_{g g}=\frac{\tilde{\beta}^{\left(n_{f}\right)}}{\tilde{\beta}^{\left(n_{f}+1\right)}}-\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right] M_{g Q}
$$

$M_{g q}=\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[\gamma_{m}^{\left(n_{f}+1\right)}-\gamma_{m}^{\left(n_{f}\right)}\right]-\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right] M_{q Q}$
M_{gQ} and M_{qQ} known through 3 loops:

Chetyrkin et al. (1997)
New results for gluon-induced decoupling relations

$$
M_{g g}^{(2)}=\frac{11}{36}-\frac{11}{6} \log \frac{\mu_{Q}}{m_{Q}}+\frac{1}{9} \log ^{2} \frac{\mu_{Q}}{m_{Q}}
$$

New result for heavy quark

$$
M_{g g}^{(3)}=\frac{564731}{41472}-\frac{2821}{288} \log \frac{\mu_{Q}}{m_{Q}}+\frac{3}{16} \log ^{2} \frac{\mu_{Q}}{m_{Q}}-\frac{1}{27} \log ^{3} \frac{\mu_{Q}}{m_{Q}}-\frac{82043}{9216} \zeta(3)
$$

$$
+n_{f}\left[-\frac{2633}{10368}+\frac{67}{96} \log \frac{\mu_{Q}}{m_{Q}}-\frac{1}{3} \log ^{2} \frac{\mu_{Q}}{m_{Q}}\right]
$$

$$
\begin{aligned}
& f_{c, N}^{(0) \prime}=0.083-0.103 \lambda+\mathcal{O}\left(\alpha_{s}^{4}, 1 / m_{c}\right)=0.073(3)+\mathcal{O}\left(\alpha_{s}^{4}, 1 / m_{c}\right) \\
& f_{q, N}^{(0) \prime}=f_{q, N}^{(0)}+\mathcal{O}\left(1 / m_{c}\right)
\end{aligned}
$$

$$
M_{q g}^{(2)}=-\frac{89}{54}+\frac{20}{9} \log \frac{\mu_{Q}}{m_{Q}}-\frac{8}{3} \log ^{2} \frac{\mu_{Q}}{m_{Q}}
$$

Hill, Solon (2014)

Impact of NLO corrections on wino-like direct detection cross section:

- WIMP scattering + high-scale matching: Heavy WIMP Effective Theory (HWET)
- WIMP scattering + collider production, connecting weak scale to hadronic scale: heavy quark decoupling
- WIMP annihilation: HWET+Soft Collinear Effective Theory

Consider heavy neutral wino/WISP/heavy triplet WIMP annihilating to neutral gauge bosons

Intricate process: loop induced, and interplay of 4 effects:

- hard annihilation (high scale matching)
- Sudakov suppression (RG evolution)
- Collinear anomaly (low scale matching)
- Sommerfeld enhancement (nonperturbative wavefunction solution)

Treated systematically in a sequence of matching+running in EFT

A systematic treatment is not optional, especially for large mass

one loop, neglect wavefunction enhancement

tree level severely overestimates

Scales of heavy WIMP annihilation

hard annihilation
(makes it happen)

Sudakov suppression (makes it slower)

Collinear anomaly: remant of nonfactorization

Sommerfeld enhancement (makes it faster)

Match onto SCET at hard scale $\mu \sim 2 M$:

Resummation governed by cusp:

$$
\begin{aligned}
& \Gamma(R)=\frac{1}{2} \gamma_{\text {cusp }}[\underbrace{\left(C_{2}(r)+C_{2}\left(r^{\prime}\right)\right.}_{\text {group theory }})\left(\log \frac{4 M^{2}}{\mu^{2}}-i \pi\right)+i \pi C_{2}(R)]+\gamma^{r}+\gamma^{r^{\prime}}+\gamma^{R}-2 \frac{\beta(g)}{g} \\
&
\end{aligned}
$$

Match onto SCET at hard scale $\mu \sim 2 M$:

Resummation governed by cusp:

$$
\begin{aligned}
\Gamma(R)=\frac{1}{2} \gamma_{\text {cusp }}[\underbrace{\left(C_{2}(r)+C_{2}\left(r^{\prime}\right)\right.}_{\text {group theory }})\left(\log \frac{4 M^{2}}{\mu^{2}}-i \pi\right)+i \pi C_{2}(R)]+\gamma^{r}+\gamma^{r^{\prime}}+\gamma^{R}-2 \frac{\beta(g)}{g} \\
\text { Becher, Hill, Lange, Neubert (2004) } \\
\text { Becher, Neubert (2009) } \\
\text { Beneke, Falgari, Schwinn (2009) }
\end{aligned}
$$

Annihilation of nonrelativistic particles described by QM:
e.g.

$$
\begin{gathered}
H=\frac{p^{2}}{2 m}+V+i W \\
V=-\frac{\alpha}{r}
\end{gathered}
$$

Bound state annihilation:

$$
\begin{array}{ll}
\Gamma=-2\langle\psi \mid W \psi\rangle=-2 w|\psi(0)|^{2} & \langle\psi \mid \psi\rangle=1 \\
& |\psi(0)|^{2}=\frac{(m \alpha)^{3}}{\pi n^{3}}
\end{array}
$$

Asymptotic plane wave annihilation:

$$
\begin{array}{r}
\sigma v=-2\langle\psi \mid W \psi\rangle=-2 w|\psi(0)|^{2} \quad \psi \rightarrow e^{i k z}+f(\theta) \frac{e^{i k r}}{r} \\
|\psi(0)|^{2}=\frac{\frac{2 \pi \alpha}{v}}{1-\exp \left[-\frac{2 \pi \alpha}{v}\right]}
\end{array}
$$

Heavy $\operatorname{SU}(2)$ triplet: multi-channel annihilation process:

 charged states lifted by EWSB effects:$$
M_{(Q)}-M_{(Q=0)}=\alpha_{2} Q^{2} m_{W} \sin ^{2} \frac{\theta_{W}}{2}+\mathcal{O}(1 / M) \approx(170 \mathrm{MeV}) Q^{2}
$$

asymptotic neutral channel, but leading hard annihilation through charged channel

Below electroweak scale, match to QM

Annihilation rate given by

$$
\sigma v=-2\langle\psi \mid W \psi\rangle=-2 \psi^{*}(0)_{i} W_{i j} \psi(0)_{j}
$$

Nontrivial wavefunction effects:

one loop, neglect wavefunction enhancement

Recall that the messenger modes introduce a new scale collinear: $\quad p^{\mu} \sim Q\left(\lambda^{2}, 1, \lambda\right)$

$$
\text { collinear }{ }^{\prime}: \quad p^{\mu} \sim Q\left(1, \lambda^{2}, \lambda\right)
$$

$$
p_{\text {messenger }}^{2} \sim \frac{p^{2} p^{\prime 2}}{Q^{2}} \ll p^{2}
$$

$$
\text { messenger : } \quad p^{\mu} \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)
$$

This allows large logarithms to sneak in the back door

$$
i \mathcal{M}^{+-\rightarrow \gamma \gamma}=
$$

$$
c_{1}(\mu)\left[-\frac{4 \pi^{2}}{3}+32 \log \frac{2 M}{\mu} \log \frac{m_{W}}{\mu}-16 i \pi \log \frac{m_{W}}{\mu}-16 \log ^{2} \frac{m_{W}}{\mu}\right]
$$

$$
+c_{2}(\mu)\left[-\frac{4 \pi^{2}}{3}+32 \log \frac{2 M}{\mu} \log \frac{m_{W}}{\mu}-8 i \pi \log \frac{m_{W}}{\mu}-16 \log ^{2} \frac{m_{W}}{\mu}-8 \log \frac{m_{W}}{\mu}\right]
$$

Happily, the dependence on the large scale may be resummed

Basic idea:

$$
\frac{d}{d \log \mu}[\text { observable }]=0
$$

$$
\frac{d}{d \log \mu} \log ^{2} \frac{\mu^{2}}{M^{2}}=4 \log \frac{\mu}{M}
$$

The only thing whose variation can cancel this dependence is

$$
\log \frac{\mu^{2}}{M^{2}} \log \frac{\mu^{2}}{m_{W}^{2}}
$$

And so the coefficient is tied to the universal cusp structure

Can now resum these subleading logs:

determined by cusp structure

Next-to-leading log, versus leading-log resummation:

General framework in which to reliably compute annihilation signals for heavy WIMPs.

- QCD corrections are important to dark matter searches
- determine discovery potential (e.g. heavy pure states)
- determine compatibility of potential signals between experiments
- interplay with perturbative and nonperturbative QCD
- lattice matrix elements
- high-order decoupling relations
- novel nuclear responses
- EFT developments
- matching and renormalization in HPET
- Lorentz invariance in HPET
- high-order decoupling relations
- interplay of collinear anomaly and EWSB
- work to do:
- I/M HWET
- I/mc corrections to decoupling (lattice QCD)
- nuclear responses (identical at I-body level)

extra slides

Additional states in the dark sector
singlet-doublet (e.g., bino-higgsino)

triplet-doublet (e.g., wino-higgsino)
Δ : mass splitting of multiplets, in units where tree/ loop crossover occurs at ~ 1
interplay of mass-suppressed (tree level) and loop suppressed contributions

Single-nucleon operators

$$
\begin{aligned}
\mathcal{L}_{N \chi, P T}= & \frac{1}{m_{N}^{2}}\left\{d_{1} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{i} \chi+d_{2} N^{\dagger} N \chi^{\dagger} \chi\right\}+\frac{1}{m_{N}^{4}}\left\{d_{3} N^{\dagger} \partial_{+}^{i} N \chi^{\dagger} \partial_{+}^{i} \chi+d_{4} N^{\dagger} \partial_{-}^{i} N \chi^{\dagger} \partial_{-}^{i} \chi\right. \\
& +d_{5} N^{\dagger}\left(\boldsymbol{\partial}^{2}+\overleftarrow{\boldsymbol{\partial}^{2}}\right) N \chi^{\dagger} \chi+d_{6} N^{\dagger} N \chi^{\dagger}\left(\boldsymbol{\partial}^{2}+\overleftarrow{\boldsymbol{\partial}^{2}}\right) \chi+i d_{8} \epsilon^{i j k} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \partial_{+}^{k} \chi \\
& +i d_{9} \epsilon^{i j k} N^{\dagger} \sigma^{i} \partial_{+}^{j} N \chi^{\dagger} \partial_{-}^{k} \chi+i d_{11} \epsilon^{i j k} N^{\dagger} \partial_{+}^{k} N \chi^{\dagger} \sigma^{i} \partial_{-}^{j} \chi+i d_{12} \epsilon^{i j k} N^{\dagger} \partial_{-}^{k} N \chi^{\dagger} \sigma^{i} \partial_{+}^{j} \chi \\
& +d_{13} N^{\dagger} \sigma^{i} \partial_{+}^{j} N \chi^{\dagger} \sigma^{i} \partial_{+}^{j} \chi+d_{14} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \sigma^{i} \partial_{-}^{j} \chi+d_{15} N^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\partial}_{+} N \chi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\partial}_{+} \chi \\
& +d_{16} N^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\partial}_{-} N \chi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\partial}_{-} \chi+d_{17} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \sigma^{j} \partial_{-}^{i} \chi \\
& +d_{18} N^{\dagger} \sigma^{i}\left(\boldsymbol{\partial}^{2}+\overleftarrow{\boldsymbol{\partial}}^{2}\right) N \chi^{\dagger} \sigma^{i} \chi+d_{19} N^{\dagger} \sigma^{i}\left(\partial^{i} \partial^{j}+\overleftarrow{\partial^{j}} \overleftarrow{\left.\partial^{i}\right) N \chi^{\dagger} \sigma^{j} \chi}\right. \\
& \left.+d_{20} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{i}\left(\boldsymbol{\partial}^{2}+\overleftarrow{\boldsymbol{\partial}^{2}}\right) \chi+d_{21} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{j}\left(\partial^{i} \partial^{j}+\overleftarrow{\partial^{j}} \overleftarrow{\partial^{i}}\right) \chi\right\}+\mathcal{O}\left(1 / m_{N}^{6}\right)
\end{aligned}
$$

Lorentz invariance:

$r d_{4}+d_{5}=\frac{d_{2}}{4}, \quad d_{5}=r^{2} d_{6}, \quad 8 r\left(d_{8}+r d_{9}\right)=-r d_{2}+d_{1}, \quad 8 r\left(r d_{11}+d_{12}\right)=-d_{2}+r d_{1}$
$r d_{14}+d_{18}=\frac{d_{1}}{4}, \quad d_{18}=r^{2} d_{20}, \quad 2 r d_{16}+d_{19}=\frac{d_{1}}{4}, \quad r\left(d_{16}+d_{17}\right)+d_{19}=0, \quad d_{19}=r^{2} d_{21}$,

Light WIMP+ SM

$$
\begin{aligned}
\mathcal{L}_{\psi, \mathrm{SM}}= & \frac{c_{\psi 1}}{m_{W}} \bar{\psi} \sigma^{\mu \nu} \psi F_{\mu \nu}+\frac{c_{\psi 2}}{m_{W}} \bar{\psi} \sigma^{\mu \nu} \psi \tilde{F}_{\mu \nu}+\sum_{q=u, d, s, c, b}\left\{\frac{c_{\psi 3, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \bar{q} \gamma_{\mu} q+\frac{c_{\psi 4, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \bar{q} \gamma_{\mu} \gamma_{5}(\right. \\
& +\frac{c_{\psi 5, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \psi \bar{q} \gamma_{\mu} q+\frac{c_{\psi 6, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \psi \bar{q} \gamma_{\mu} \gamma_{5} q+\frac{c_{\psi 7, q}}{m_{W}^{3}} \bar{\psi} \psi m_{q} \bar{q} q+\frac{c_{\psi 8, q}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi m_{q} \bar{q} q \\
& +\frac{c_{\psi 9, q}}{m_{W}^{3}} \bar{\psi} \psi m_{q} \bar{q} i \gamma_{5} q+\frac{c_{\psi 10, q}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi m_{q} \bar{q} i \gamma_{5} q+\frac{c_{\psi 11, q}}{m_{W}^{3}} \bar{\psi} i \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} q \\
& +\frac{c_{\psi 12, q}}{m_{W}^{3}} \bar{\psi} \gamma_{5} \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} q+\frac{c_{\psi 13, q}}{m_{W}^{3}} \bar{\psi} i \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} \gamma_{5} q+\frac{c_{\psi 14, q}}{m_{W}^{3}} \bar{\psi} \gamma_{5} \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} \gamma_{5} q \\
& \left.+\frac{c_{\psi 15, q}}{m_{W}^{3}} \bar{\psi} \sigma_{\mu \nu} \psi m_{q} \bar{q} \sigma^{\mu \nu} q+\frac{c_{\psi 16, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\psi} \sigma^{\mu \nu} \psi m_{q} \bar{q} \sigma^{\rho \sigma} q\right\}+\frac{c_{\psi 17}}{m_{W}^{3}} \bar{\psi} \psi G_{\alpha \beta}^{A} G^{A \alpha \beta} \\
& +\frac{c_{\psi 18}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi G_{\alpha \beta}^{A} G^{A \alpha \beta}+\frac{c_{\psi 19}}{m_{W}^{3}} \bar{\psi} \psi G_{\alpha \beta}^{A} \tilde{G}^{A \alpha \beta}+\frac{c_{\psi 20}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi G_{\alpha \beta}^{A} \tilde{G}^{A \alpha \beta}+\ldots,
\end{aligned}
$$

Majorana:

$c_{\psi n}$ with $n=1,2,5,6,11,12,13,14,15,16$ vanish,

Heavy WIMP + SM

$$
\begin{align*}
\mathcal{L}_{\chi_{v}, \mathrm{SM}}= & \frac{c_{\chi 1}}{m_{W}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} F_{\mu \nu}+\frac{c_{\chi 2}}{m_{W}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} \tilde{F}_{\mu \nu}+\sum_{q=u, d, s, c, b}\left\{\frac{c_{\chi 3, q}}{m_{W}^{2}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q} \gamma^{\sigma} q\right. \\
& +\frac{c_{\chi 4, q}}{m_{W}^{2}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q} \gamma^{\sigma} \gamma_{5} q+\frac{c_{\chi 5, q}}{m_{W}^{2}} \bar{\chi}_{v} \chi_{v} \bar{q} \psi q+\frac{c_{\chi 6, q}}{m_{W}^{2}} \bar{\chi}_{v} \chi_{v} \bar{q} \psi \gamma_{5} q+\frac{c_{\chi 7, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} m_{q} \bar{q} q \\
& +\frac{c_{\chi 8, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} \bar{q} \psi i v \cdot D_{-} q+\frac{c_{\chi 9, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} m_{q} \bar{q} i \gamma_{5} q+\frac{c_{\chi 10, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} \bar{q} \psi \gamma_{5} i v \cdot D_{-} q \\
& +\frac{c_{\chi 11, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} q+\frac{c_{\chi 12, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} q+\frac{c_{\chi 13, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} \gamma_{5} q \\
& +\frac{c_{\chi 14, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} \gamma_{5} q+\frac{c_{\chi 15, q}^{3}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q}\left(\psi i D_{-}^{\sigma}+\gamma^{\sigma} i v \cdot D_{-}\right) q \\
& +\frac{c_{\chi 16, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q}\left(\psi i D_{-}^{\sigma}+\gamma^{\sigma} i v \cdot D_{-}\right) \gamma_{5} q+\frac{c_{\chi 17, q}}{m_{W}^{3}} \bar{\chi}_{v} i \partial_{-}^{\perp \mu} \chi_{v} \bar{q} \gamma_{\mu} q \\
& +\frac{c_{\chi 18, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} q+\frac{c_{\chi 18, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} q+\frac{c_{\chi 20, q}}{m_{W}^{3}} \bar{\chi}_{v} i \partial_{-}^{\perp \mu} \chi_{v} \bar{q} \gamma_{\mu} \gamma_{5} q \\
& +\frac{c_{\chi 21, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} \gamma_{5} q+\frac{c_{\chi 22, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} \gamma_{5} q+\frac{c_{\chi 23, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} m_{q} \bar{q} \sigma_{\mu \nu} q \\
& \left.+\frac{c_{\chi 24, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} m_{q} \bar{q} \sigma^{\rho \sigma} q\right\}+\frac{c_{\chi 25}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} G_{\alpha \beta}^{A} G^{A \alpha \beta}+\frac{c_{\chi 26}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} G_{\alpha \beta}^{A} \tilde{G}^{A \alpha \beta} \\
& +\frac{c_{\chi 27}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} v_{\mu} v_{\nu} G_{\alpha}^{A \mu} G^{A \nu \alpha}+\frac{c_{\chi 28}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} \epsilon_{\mu \nu \alpha \beta} v^{\alpha} v G^{\gamma} G_{\beta \delta} G_{\gamma \delta}^{A}+\ldots, \tag{i}
\end{align*}
$$

Lorentz:

$$
\frac{m_{W}}{M} c_{\chi 3}+2 c_{\chi 12}=\frac{m_{W}}{M} c_{\chi 4}+2 c_{\chi 14}=\frac{m_{W}}{M} c_{\chi 5}-2 c_{\chi 17}=\frac{m_{W}}{M} c_{\chi 6}-2 c_{\chi 20}=c_{\chi 11}=c_{\chi 13}=0,
$$

Majorana:

$c_{\chi n}$ vanish for $n=1,2,5,6,15,16,17,18,19,20,21,22,23,24$.

