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focus on 3 problems

• WIMP scattering + high-scale matching: 
Heavy WIMP Effective Theory (HWET)

• WIMP scattering + collider production, 
connecting weak scale to hadronic scale: 
heavy quark decoupling 

• WIMP annihilation: HWET+Soft Collinear 
Effective Theory
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

wino: dimensional estimate

higgsino: Snowmass benchmark
(2013)

SM

SMNot quibbling about percents 
(example 1: heavy WIMP scattering)
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Not quibbling about percents 
(example 2: light WIMPs)
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Figure 1: The ratio f
n

/f
p

of the e↵ective WIMP-neutron (f
n

) and WIMP-proton (f
p

) couplings in
terms of the parameters b

i

in Eq. (91). For b
g

= 0 (left panel), f
n

/f
p

is independent of ⇤ and depends
on only the ratio b

u

/b
d

. The uncertainty bands are from variation of the matrix element ⌃� (gray)
and the ratio R

ud

= m
u

/m
d

(red), with ranges given in (58) and (60). We illustrate the e↵ect of
non-zero b

g

in the right panel, with b
d

= �b
u

= 0.01 and ⇤ = 400GeV. The solid (dashed) line is the
prediction assuming that the coe�cients b

i

are defined at a high (low) scale µ ⇠ m
t

(µ ⇠ m
c

). The
inset shows the curves over the same vertical range, including uncertainty bands for the solid line
from variation of ⌃� (gray) and R

ud

(red). In both cases the variation from ⌃
⇡N

is subdominant.

6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)

q,g

and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
completeness:19
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19 Spin-0 results were also obtained in [80].
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)
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and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3
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. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)
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and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3
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. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by

L
�v , SM = �̄

v

�
v

⇢

X

q=u,d,s,c,b



c(0)
q

O(0)

q

+ c(2)
q

v
µ

v
⌫

O(2)µ⌫

q

�

+ c(0)
g

O(0)

g

+ c(2)
g

v
µ

v
⌫

O(2)µ⌫

g

�

+ . . . , (92)

where the scalar and C-even spin-two operators, O(0)
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and O(2)
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, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3
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. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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Figure 4: Sommerfeld enhanced annihilation cross sections for two fixed order approximations. The
blue dotted curve truncates the w factors at O(↵2), while the green dashed line is the one-loop result
including O(↵3) contributions in w± and w±00

and the first non-vanishing O(↵4) contribution in w
00

.
Note that for M & 6 TeV, the one-loop cross section becomes negative due to the presence of a large
Sudakov logarithm with a negative coe�cient. For illustration we include the orange dot-dashed line
which gives the naive cross section computed from w

00

neglecting wave function enhancements. In
this plot v = 10�3 and � = 0.17 GeV.

3.5 Fixed Order Results

Armed with the Sommerfeld matrix sij , and the elements of the W matrix given in (32), we are in

a position to compute the dark matter annihilation cross section to line photons at both tree-level

(by simply truncating the ↵ expansion in (32)) and one loop. The results of these two calculations

are shown in Fig. 4, where we have taken � = 0.17 GeV and the relative velocity v = 10�3 for the

numerical evaluation of the Sommerfeld enhancement. Clearly the one-loop result is suppressed with

respect to the tree-level result. Specifically, we find that at M = 3 TeV (a mass of interest for the

thermal wino), the ratio �
tree

/�
1-loop

⇠ 5. However the perturbative expansion is not under control,

as seen from the fact that the fixed order ↵3 cross section becomes negative for M & 6 TeV (due to

the large Sudakov logarithm, and a further mixing induced contribution from w±;00

).

These considerations motivate introducing an EFT description in order to separate the scales

mW from 2M and resum the large logarithms, regaining control over the perturbative expansion.

The first step will be to derive an appropriate EFT description that captures all of the relevant

momentum regions of the full theory. This is the topic of the next section.
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8 Implications

Having completed the high scale matching (71), RG running (79) and finally low scale matching (90),

we may proceed to use the Hamiltonian to compute interesting physical observables and investigate

the impact of perturbative corrections.
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Figure 10: Sommerfeld enhanced WIMP annihilation cross sections for � � ! � � employing three
approximations. The fixed O(↵2) result is shown in dotted blue. The fixed O(↵3) result, including
the first non-vanishing O(↵4) contribution to w

00

, is shown in dashed green. The LL resummed
result, including one-loop matching coe�cients at the high and weak scales and resummation of the
collinear anomaly contribution, is shown in solid red.

Figure 10 shows the Sommerfeld enhanced annihilation cross section to line photons for three

approximations, taking � = 0.17 GeV and v = 10�3 as above. The blue dotted and green dashed

lines are fixed order results at O(↵2) and O(↵3), respectively, with the latter also including the first

non-vanishing O(↵4) contribution to w
00

. The red solid line is the result including LL resummation,

one-loop matching coe�cients at the high and weak scales, and resummation of the collinear anomaly

contribution. The uncertainty from scale variation would not be resolved on this log plot, hence we

only show the central value and discuss perturbative uncertainties below. As previously discussed

the fixed O(↵3) result (green dashed) becomes negative for M & 6 TeV, indicating a breakdown in

perturbation theory, while the resummed result does not lead to a negative cross section for the range

of masses plotted here.

There is a robust suppression of the resummed result due to the LL correction from the (universal)

38
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• WIMP scattering + high-scale matching: 
Heavy WIMP Effective Theory (HWET)

• WIMP scattering + collider production, 
connecting weak scale to hadronic scale: 
heavy quark decoupling 

• WIMP annihilation: HWET+Soft Collinear 
Effective Theory
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Electroweak charged WIMP Mechanism versus WIMP Model 

- SUSY wino

- Weakly Interacting Stable Pion 

- Minimal Dark Matter

x
x

x

xx

Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.
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N N

Mechanisms versus models

- ...

Focus on self-conjugate SU(2) triplet.  Could be: 



We are all familiar with Heavy Particle Symmetry

e e

p d

To leading order in p/Mproton the electron doesn’t know about details of the 
nucleus beyond its charge

HHydrogen = HDeuterium =
p2

2me
� ↵

r

Apply Heavy WIMP Symmetry to provide absolute predictions for dark matter 
observables

Basic idea: 

9
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(Âa

µ⌫)
2 +  ̄(i@/ + ĝÂ/ + g2W/ ) 
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Heavy particle symmetry and weak-scale matching

+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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⇥
. (21)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.

7

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
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c(0)1q O

(0)
1q + c(2)1q vµv⇧O
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where we have chosen QCD operators of definite spin,
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1

d
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2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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lines are not displayed.
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where we have chosen QCD operators of definite spin,
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Heavy WIMP Effective Theory
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Benchmarks: pure states
“wino”

“higgsino”

Hill, Solon (2014)
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
pert

doublet

triplet

20 40 60 80 100 12010-51

10-50

10-49
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hN |mcc̄c|Ni (MeV)

�
S
I
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

mHiggs(GeV)

�
sp

in
.i
n
d
ep
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• WIMP scattering + high-scale matching: 
Heavy WIMP Effective Theory (HWET)

• WIMP scattering + collider production, 
connecting weak scale to hadronic scale: 
heavy quark decoupling 

• WIMP annihilation: HWET+Soft Collinear 
Effective Theory



17

Dark matter - Standard Model interactions 

L =
1

⇤n
ODM ⇥OSM

d Fermion

3  ̄
⇥

1 , i�
5

, �µ�
5

, {�µ , �µ⌫}⇤ 
4  ̄

⇥{1 , i�
5

, �µ�
5

} , �µ , �µ⌫
⇤

i@⇢� 

d Scalar

2 |�|2

3 {�⇤i@µ��}

d Heavy particle

3 �̄v

⇥

1 , {�µ⌫
? }⇤�v

4 �̄v

⇥{1} , �µ⌫
?

⇤

i@⇢?��v

Table 1: Gauge-invariant DM operator building blocks of indicated dimension for a relativistic
fermion and scalar, and a heavy-particle fermion. For the relativistic case, building blocks within
curly brackets, { }, vanish for self-conjugate fields such as a Majorana fermion or a real scalar.
For the heavy-particle case, building blocks within curly brackets, { }, are odd under the parity in
Eq. (3). The list for a heavy-particle scalar (of mass dimension 3/2) is obtained by omitting building
blocks with the spin structure �µ⌫? above.

and a four-component spinor  . We consider both the case where there is a conserved global U(1)
DM

DM particle number, i.e., a Dirac fermion or complex scalar, and the case where the DM particle
is self-conjugate and odd under an exact Z

2

symmetry, i.e., a Majorana fermion ( =  c) or a real
scalar (� = �⇤). As for the SM building blocks, we ignore total derivatives of DM bilinears, which
must be considered when constructing lagrangian interactions.

In the regime where the DM has mass comparable to or heavier than the electroweak scale
particles, M & m

W

, the scale separation M � m
b

allows us to employ the heavy-particle building
blocks listed in the final column of Table 1. We list the building blocks appropriate for a spin 1/2
or spin 0 heavy particle; e↵ective theories for higher-spin particles may be similarly constructed.
Lorentz transformations of the heavy particle field are governed by the little group for massive
particles defined by the time-like unit vector vµ. A heavy fermion has two degrees of freedom which
may be embedded in a Dirac spinor, �

v

, with constraint v/�
v

= �
v

(see, e.g., Ref. [31] and Sec. 2 of
Ref. [4] for more details). In writing the heavy-particle building blocks in Table 1 we assume field
redefinitions that eliminate operators with timelike derivatives v · D acting on �

v

, and hence only
perpendicular components of derivatives, @µ?, appear. In a standard notation we define spacelike
(with respect to the timelike unit vector vµ) “perpendicular” components using gµ⌫? ⌘ gµ⌫ � vµv⌫ .

In particular, we have @µ? ⌘ @
↵

g↵µ? = @µ � vµv · @ and �µ⌫? ⌘ �
↵�

g↵µ? g�⌫? .
For lagrangians containing heavy fields describing self-conjugate particles such as Majorana

fermions or real scalars, we may furthermore impose invariance under the self-conjugate parity,
enforced formally by the simultaneous operations [32, 13]2

vµ ! �vµ , �
v

! �c

v

= C�⇤
v

. (3)

Equivalently we may impose CPT invariance, applying the usual CPT transformations for relativistic
fields, but employing a modified version of CPT for the heavy-particle, under which 3

C : �(t,x) ! ⇠ �(t,x) , P : �(t,x) ! ⌘ �(t,�x) , T : �(t,x) ! ⇣ S �(�t,x) , (4)

where S = i�
2

for fermions and S = 1 for scalars [31]. In this formulation of the self-conjugate parity,
the action of discrete symmetries transforms fields, but leaves the reference vector vµ unchanged.
Hence, it may be readily employed even when the reference vector is fixed, e.g., to vµ = (1,0) in the
rest frame of the heavy particle.

2Here C is the charge conjugation matrix acting on the spinor index of �v. It is symmetric and unitary and satisfies
C†�µC = ��⇤

µ. For the extension to arbitrary spin see Ref. [31].
3The phases ⇠, ⌘ and ⇣ under C, P and T do not a↵ect scattering observables.

4

d QCD operator basis

3 V µ
q = q̄�µq

Aµ
q = q̄�µ�

5

q

4 Tµ⌫
q = imq q̄�µ⌫�

5

q

O(0)

q = mq q̄q , O(0)

g = GA
µ⌫G

Aµ⌫

O(0)

5q = mq q̄i�5q , O(0)

5g = ✏µ⌫⇢�GA
µ⌫G

A
⇢�

O(2)µ⌫
q = 1

2

q̄
⇣

�{µiD⌫}
� � gµ⌫

4

iD/�

⌘

q , O(2)µ⌫
g = �GAµ�GA⌫

� + gµ⌫

4

(GA
↵�)

2

O(2)µ⌫
5q = 1

2

q̄�{µiD⌫}
� �

5

q

Table 2: The seven operator classes: vector
�

V
q

�

, axial-vector
�

A
q

�

, tensor
�

T
q

�

, scalar
�

O(0)

q

, O(0)

g

�

,

pseudoscalar
�

O(0)

5q

, O(0)

5g

�

, C-even spin-2
�

O(2)

q

, O(2)

g

�

and C-odd spin-2
�

O(2)

5q

�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.

8

} complete 
QCD basis 

for d≤7
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focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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The vector currents have trivial matching conditions up to power corrections, while the axial-
vector currents, tensor currents and C-odd spin-two operators receive threshold matching corrections
beginning at O(↵2

s

). Since the latter operator classes have nuclear spin-dependent and/or velocity-
suppressed matrix elements in physical WIMP-nucleon processes at small relative velocity, we restrict
attention to the leading e↵ects of renormalization scale evolution as detailed in the previous section,
and neglect heavy quark threshold matching conditions which are suppressed in each case by a
further power of ↵

s

.9 In terms of Eq. (27), we express these solutions in the basis (u, d, s, . . . |Q) as
the n

f

⇥ (n
f

+ 1) matrix M
ij

= M�
ij

, with i = u, d, s, . . . and j = u, d, s, . . . , Q. The constants M
are collected in Table 6.

For the scalar, pseudoscalar and C-even spin-two operators, threshold matching involving gluon
operators begins at O(↵

s

), and the solution to the matching condition may be expressed in terms of
an (n

f

+ 1)⇥ (n
f

+ 2) matrix in the basis (u, d, s, . . . |Q|g) as

M =

0

B

B

B

B

@

1 0 0
. . .

...
...

1 0 0

0 · · · 0 M
gQ

M
gg

1

C

C

C

C

A

. (28)

This parameterization is su�cient for matching at NLO for scalar operators [47] and at LO for
pseudoscalar and C-even spin-two operators.10 The elements M

ij

are given in Table 6. Scheme
dependence for the heavy quark mass (e.g. pole versus MS) appears at higher order.

Due to the lightness of the charm quark, and correspondingly poorly convergent ↵
s

(m
c

) expansion,
WIMP-nucleon cross sections can depend sensitively on threshold corrections for the scalar operator.

Contributions from matrix elements of the heavy quark operator, i.e., the column vector M (0)

i(nf+1)

,

are known through O(↵3

s

) [48]. In the next section, we employ a sum rule for matrix elements of
scalar operators, derived from the QCD energy momentum tensor, to obtain new relations amongst
the elements of M (0), thus extending the available results at higher-orders.

3.5 Sum rule constraints on scale evolution and heavy quark threshold matching

The equivalence of physical matrix elements determined in theories defined at di↵erent scales or with
di↵erent numbers of active quark flavors, together with the solutions for coe�cient evolution and
matching at heavy quark thresholds given in Eqs. (23) and (27), imply relations between operator
matrix elements:

hO0(S)
i

i(µ
h

) = R(S)

ji

(µ, µ
h

)hO(S)

j

i(µ) , hO0(S)
i

i(µ
b

) = M (S)

ji

(µ
b

)hO(S)

j

i(µ
b

) +O(1/m
b

) , (29)

where h · i ⌘ hN | · |Ni denotes a physical matrix element (for definiteness we consider the matrix
element in a nucleon state |Ni). The first relation links operator matrix elements at di↵erent scales
but with the same number of active quarks, while the second relation links operator matrix elements
at the same scale (here taken to be the bottom threshold for definiteness) but with n

f

+ 1 (primed)
and n

f

(unprimed) active flavors.

The matrix elements hO(S)

i

i are not independent but linked by sum rules derived from the trace
and traceless part of the (symmetric and conserved) QCD energy momentum tensor ✓µ⌫ . Let us

9For explicit results at two and three loop order see [45, 46].
10In the next section we generalize the parameterization of Mij for higher-order matching in the case of scalar

operators.
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focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].

15

Renormalization: (focus on ops relevant to heavy WIMPs) 

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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focus on spin-0 (evaluate spin-2 at weak scale)

Operator Anomalous dimension

Vq �V = 0

Aq �(singlet)

A =
�

↵s
4⇡

�

2

16nf +O(↵3

s) ,

�(non�singlet)

A = 0

Tq �T = �↵s
4⇡

32

3

+O(↵2

s) ,

O(0)

q , O(0)

g �(0)

qq = 0 , �(0)

qg = 0 ,

�(0)

gq = �2�0
m , �(0)

gg = �̃0

O(0)

5q , O(0)

5g �(0)

5,qq = 0 , �(0)

5,qg = 0 ,

�(0)

5,gq = �↵s
4⇡ 32 +O(↵2

s) , �(0)

5,gg = �↵s
4⇡ 2�0

+O(↵2

s)

O(2)

q , O(2)

g �(2)

qq = ↵s
4⇡

64

9

+O(↵2

s) , �(2)

qg = �↵s
4⇡

4

3

+O(↵2

s) ,

�(2)

gq = �↵s
4⇡

64

9

+O(↵2

s) , �(2)

gg = ↵s
4⇡

4nf

3

+O(↵2

s)

O(2)

5q �(2)

5

= ↵s
4⇡

64

9

+O(↵2

s)

Table 4: Anomalous dimensions for the seven operator classes arising in the low-energy e↵ective
theory for the DM particle. Here we denote X 0 ⌘ g @

@g

X.

The renormalization constants for axial-vector currents and pseudoscalar operators include a finite
contribution beyond MS, and hence we employ the general definition in (20) to determine their
anomalous dimensions.

For vector currents, axial-vector currents, tensor currents and C-odd spin-two operators, the
anomalous dimensions have the form �

ij

= ��
ij

, with � listed in Table 4. For scalar, pseudoscalar
and C-even spin-two operators, the anomalous dimensions, in the basis (u, d, s, . . . |g), have the form

� =

0

B

B

B

B

B

B

@

�
qq

�
qg

. . .
...

�
qq

�
qg

�
gq

· · · �
gq

�
gg

1

C

C

C

C

C

C

A

. (22)

with elements �
ij

listed in Table 4.
It is straightforward to solve for the evolution of coe�cients from a high scale µ

h

down to a low
scale µ

l

, employing the anomalous dimension for each of the seven operator classes. Let us express
the solutions as

c
i

(µ
l

) = R
ij

(µ
l

, µ
h

)c
j

(µ
h

) . (23)

For vector currents, axial-vector currents, tensor currents and C-odd spin-two operators, the solutions
have the form R

ij

= R�
ij

, with R listed in Table 5. For scalar, pseudoscalar operators and C-even

11{

d QCD operator basis

3 V µ
q = q̄�µq

Aµ
q = q̄�µ�

5

q

4 Tµ⌫
q = imq q̄�µ⌫�

5

q

O(0)

q = mq q̄q , O(0)

g = GA
µ⌫G

Aµ⌫

O(0)

5q = mq q̄i�5q , O(0)

5g = ✏µ⌫⇢�GA
µ⌫G

A
⇢�

O(2)µ⌫
q = 1

2

q̄
⇣

�{µiD⌫}
� � gµ⌫

4

iD/�

⌘

q , O(2)µ⌫
g = �GAµ�GA⌫

� + gµ⌫

4

(GA
↵�)

2

O(2)µ⌫
5q = 1

2

q̄�{µiD⌫}
� �

5

q

Table 2: The seven operator classes: vector
�

V
q

�

, axial-vector
�

A
q

�

, tensor
�

T
q

�

, scalar
�

O(0)

q

, O(0)

g

�

,

pseudoscalar
�

O(0)

5q

, O(0)

5g

�

, C-even spin-2
�

O(2)

q

, O(2)

g

�

and C-odd spin-2
�

O(2)

5q

�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.

8
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O(2)µ⌫
5q = 1

2

q̄�{µiD⌫}
� �

5

q

Table 2: The seven operator classes: vector
�

V
q

�

, axial-vector
�

A
q

�

, tensor
�

T
q

�

, scalar
�

O(0)

q

, O(0)

g

�

,

pseudoscalar
�

O(0)

5q

, O(0)

5g

�

, C-even spin-2
�

O(2)

q

, O(2)

g

�

and C-odd spin-2
�

O(2)

5q

�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.

8
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focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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The vector currents have trivial matching conditions up to power corrections, while the axial-
vector currents, tensor currents and C-odd spin-two operators receive threshold matching corrections
beginning at O(↵2

s

). Since the latter operator classes have nuclear spin-dependent and/or velocity-
suppressed matrix elements in physical WIMP-nucleon processes at small relative velocity, we restrict
attention to the leading e↵ects of renormalization scale evolution as detailed in the previous section,
and neglect heavy quark threshold matching conditions which are suppressed in each case by a
further power of ↵

s

.9 In terms of Eq. (27), we express these solutions in the basis (u, d, s, . . . |Q) as
the n

f

⇥ (n
f

+ 1) matrix M
ij

= M�
ij

, with i = u, d, s, . . . and j = u, d, s, . . . , Q. The constants M
are collected in Table 6.

For the scalar, pseudoscalar and C-even spin-two operators, threshold matching involving gluon
operators begins at O(↵

s

), and the solution to the matching condition may be expressed in terms of
an (n

f

+ 1)⇥ (n
f

+ 2) matrix in the basis (u, d, s, . . . |Q|g) as

M =

0

B

B

B

B

@

1 0 0
. . .

...
...

1 0 0

0 · · · 0 M
gQ

M
gg

1

C

C

C

C

A

. (28)

This parameterization is su�cient for matching at NLO for scalar operators [47] and at LO for
pseudoscalar and C-even spin-two operators.10 The elements M

ij

are given in Table 6. Scheme
dependence for the heavy quark mass (e.g. pole versus MS) appears at higher order.

Due to the lightness of the charm quark, and correspondingly poorly convergent ↵
s

(m
c

) expansion,
WIMP-nucleon cross sections can depend sensitively on threshold corrections for the scalar operator.

Contributions from matrix elements of the heavy quark operator, i.e., the column vector M (0)

i(nf+1)

,

are known through O(↵3

s

) [48]. In the next section, we employ a sum rule for matrix elements of
scalar operators, derived from the QCD energy momentum tensor, to obtain new relations amongst
the elements of M (0), thus extending the available results at higher-orders.

3.5 Sum rule constraints on scale evolution and heavy quark threshold matching

The equivalence of physical matrix elements determined in theories defined at di↵erent scales or with
di↵erent numbers of active quark flavors, together with the solutions for coe�cient evolution and
matching at heavy quark thresholds given in Eqs. (23) and (27), imply relations between operator
matrix elements:

hO0(S)
i

i(µ
h

) = R(S)

ji

(µ, µ
h

)hO(S)

j

i(µ) , hO0(S)
i

i(µ
b

) = M (S)

ji

(µ
b

)hO(S)

j

i(µ
b

) +O(1/m
b

) , (29)

where h · i ⌘ hN | · |Ni denotes a physical matrix element (for definiteness we consider the matrix
element in a nucleon state |Ni). The first relation links operator matrix elements at di↵erent scales
but with the same number of active quarks, while the second relation links operator matrix elements
at the same scale (here taken to be the bottom threshold for definiteness) but with n

f

+ 1 (primed)
and n

f

(unprimed) active flavors.

The matrix elements hO(S)

i

i are not independent but linked by sum rules derived from the trace
and traceless part of the (symmetric and conserved) QCD energy momentum tensor ✓µ⌫ . Let us

9For explicit results at two and three loop order see [45, 46].
10In the next section we generalize the parameterization of Mij for higher-order matching in the case of scalar

operators.
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focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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masses in the n
f

and n
f

� 1 flavor theories are defined to include the induced e↵ects of the heavy
quark, we have simply M

qq

⌘ 1. These arguments imply from (33) a solution for all elements in
terms of M

gQ

and M
qQ

:

M
qq

⌘ 1 , M
qq

0 ⌘ 0 , M
gq

⌘ 0 ,

M
gg

=
�̃(nf )

�̃(nf+1)

� 2

�̃(nf+1)

⇥

1� �
(nf+1)

m

⇤

M
gQ

,

M
gq

=
2

�̃(nf+1)

⇥

�
(nf+1)

m

� �
(nf )
m

⇤� 2

�̃(nf+1)

⇥

1� �
(nf+1)

m

⇤

M
qQ

. (35)

Let us consider solutions for the elements of M (0) expanded in powers of ↵
s

,

M =
1
X

n=0

 

↵
(nf+1)

s

(µ
Q

)

⇡

!

n

M (n) , (36)

where the superscript signifies that the strong coupling constant is defined in the (n
f

+ 1)-flavor
theory. Employing this ↵

s

counting and the O(↵4

s

) results for M
gQ

and M
qQ

from Ref. [48], we may
solve the relations in Eq. (34) order by order.12 Let us work in the MS scheme, employing results for

M
gQ

and M
qQ

, as well as for the nontrivial matching condition between ↵
(nf )
s

(µ
Q

) and ↵
(nf+1)

s

(µ
Q

)
found in Ref. [48], expressed in terms of the heavy quark mass m

Q

defined in this scheme. Working
through NLO, we recover the result in Table 6. At NNLO, we find

M (2)

gg

=
11

36
� 11

6
log

µ
Q

m
Q

+
1

9
log2

µ
Q

m
Q

. (37)

At NNNLO, we find

M (3)

gg

=
564731

41472
� 2821

288
log

µ
Q

m
Q

+
3

16
log2

µ
Q

m
Q

� 1

27
log3

µ
Q

m
Q

� 82043

9216
⇣(3)

+ n
f

"

� 2633

10368
+

67

96
log

µ
Q

m
Q

� 1

3
log2

µ
Q

m
Q

#

,

M (2)

qg

= �89

54
+

20

9
log

µ
Q

m
Q

� 8

3
log2

µ
Q

m
Q

. (38)

Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by

hO0(0)
Q

i/m
N

= M
qQ

�+M
gQ

2

�̃(nf )
[1� (1� �

(nf )
m

)�]

=
1

3�
(nf )

0

(

2� 2�

)

+
↵
(nf+1)

s

(µ
Q

)

⇡

 

1

3�
(nf )

0

!

2

(

57

2
� 321�

2
+ 8n

f

)

12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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Operator Solution to matching condition

Vq MV = 1

Aq MA = 1 +O(↵2

s)

Tq MT = 1 +O(↵2

s)

O(0)

q , O(0)

g M (0)

gQ = �↵0
s(µQ)

12⇡

n

1 + ↵0
s(µQ)

4⇡

h

11� 4

3

log µQ

mQ

i

+O(↵2

s)
o

,

M (0)

gg = 1� ↵0
s(µQ)

3⇡ log µQ

mQ
+O(↵2

s)

O(0)

5q , O(0)

5g M (0)

5,gQ = ↵0
s(µQ)

8⇡ +O(↵2

s) , M (0)

5,gg = 1 +O(↵s)

O(2)

q , O(2)

g M (2)

gQ = ↵0
s

3⇡ log µQ

mQ
+O(↵2

s) , M (2)

gg = 1 +O(↵s)

O(2)

5q M (2)

5

= 1 +O(↵2

s)

Table 6: Heavy quark threshold matching relations for the seven operator classes. The strong
coupling in the (n

f

+ 1)-flavor theory is denoted ↵0
s

.

two-loop. For the tensor current and C-odd spin-two operator we have presented the leading log-
arithmic order solutions. The chosen renormalization prescription ensures scale invariance of the
quark pseudoscalar operators to all orders.

For most phenomenological applications we may simply evaluate the matrix elements of the C-
even spin-two operators in terms of parton distribution functions (PDFs) at the weak scale µ

h

⇠ m
W

.
This avoids the need for renormalization group analysis (apart from matching to a convenient scale to
evaluate matrix elements) and heavy-quark threshold matching conditions. Nonetheless, we include
the above results for future analyses which may require an evaluation of tensor matrix elements at
low scales, such as in considering multi-nucleon contributions to matrix elements [43, 24, 44], or in
investigating the power-suppressed mixing between scalar and tensor operators.

3.4 Heavy quark threshold matching

After evolving to the scale µ
Q

⇠ m
Q

, we integrate out the heavy quark, i.e., the bottom or charm
quark, of mass m

Q

. The coe�cients in the n
f

- and (n
f

+ 1)-flavor theories are related by matching
physical matrix elements. In terms of renormalized coe�cients and operators the matching condition
is

c0
i

hO0
i

i = c
i

hO
i

i+O(1/m
Q

) , (26)

where primed and unprimed quantities are in the (n
f

+1)- and n
f

-flavor theories, respectively.8 Let
us express the solution to the matching condition as

c
i

(µ
Q

) = M
ij

(µ
Q

)c0
j

(µ
Q

) . (27)

8For example, the matching condition for scalar operators, between physical matrix elements in the 5- and 4-flavor
theories, is given by c

(0)0
g hO(0)0

g i+P
q=u,d,s,c,b c

(0)0
q hO(0)0

q i = c
(0)
g hO(0)

g i+P
q=u,d,s,c c

(0)
q hO(0)

q i+O(1/mb) , where primed
and unprimed quantities are in the 5- and 4-flavor theories, respectively, and the scale dependence is implicit.
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Quark threshold matching:

{
Notice that: 
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masses in the n
f

and n
f

� 1 flavor theories are defined to include the induced e↵ects of the heavy
quark, we have simply M

qq

⌘ 1. These arguments imply from (33) a solution for all elements in
terms of M

gQ

and M
qQ

:

M
qq

⌘ 1 , M
qq

0 ⌘ 0 , M
gq

⌘ 0 ,

M
gg

=
�̃(nf )

�̃(nf+1)

� 2

�̃(nf+1)

⇥

1� �
(nf+1)

m

⇤

M
gQ

,

M
gq

=
2

�̃(nf+1)

⇥

�
(nf+1)

m

� �
(nf )
m
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Let us consider solutions for the elements of M (0) expanded in powers of ↵
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,

M =
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where the superscript signifies that the strong coupling constant is defined in the (n
f

+ 1)-flavor
theory. Employing this ↵

s

counting and the O(↵4

s

) results for M
gQ

and M
qQ

from Ref. [48], we may
solve the relations in Eq. (34) order by order.12 Let us work in the MS scheme, employing results for

M
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and M
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, as well as for the nontrivial matching condition between ↵
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(µ
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) and ↵
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found in Ref. [48], expressed in terms of the heavy quark mass m

Q

defined in this scheme. Working
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Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by
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12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
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12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
pert
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�
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

q f (0)

q,p

f (0)

q,n

u 0.016(5)(3)(1) 0.014(5)(+2

�3

)(1)

d 0.029(9)(3)(2) 0.034(9)(+3

�2

)(2)

s 0.043(21) 0.043(21)

Table 10: Scale independent scalar form factors for the proton and neutron for light quark flavors
u, d, s. The first, second and third uncertainties are from ⌃

⇡N

, m
u

/m
d

and ⌃�, respectively. As
discussed below Eq. (60), the parameterization in Eq. (59) leads to highly correlated uncertainties in

f (0)

u,N

and f (0)

d,N

.

where we employ the quark mass ratios adopted from PDG values [68] (symmetrizing errors),

R
ud

⌘ m
u

m
d

= 0.49± 0.13 , R
sd

⌘ m
s

m
d

= 19.5± 2.5 . (60)

The resulting numerical values for the light quark scalar matrix elements are collected in Table 10.

The uncertainties in f (0)

u,N

and f (0)

d,N

are highly correlated, and for applications we use Eq. (59), varying
the inputs ⌃

⇡N

, R
ud

and ⌃� whose uncertainties are taken as uncorrelated. For both proton and

neutron, the gluon matrix element f (0)

g,N

is obtained from the quark matrix elements via the sum rule
in Eq. (56).

From the analysis of heavy quark matching conditions in Sec. 3.5, we may determine the scalar
matrix elements of heavy quark flavors. For definiteness, let us consider 4-flavor QCD with a heavy
charm quark. Denoting quantities in the 4-flavor (3-flavor) theory with (without) a prime, the results
in Eqs. (39) and (40) yield

f (0)0
c,N

= 0.083� 0.103�+O(↵4

s

, 1/m
c

) = 0.073(3) +O(↵4

s

, 1/m
c

) ,

f (0)0
q,N

= f (0)

q,N

+O(1/m
c

) , (61)

where we use � ⇡ ⌃
⇡N

/m
N

+ f (0)

s,N

= 0.089(26)MeV, neglecting the small contribution from ⌃�. An

expression for f (0)0
c,N

in terms of ↵0
s

(µ
c

) is given in Appendix B; in particular, the O(↵3

s

) term in f (0)0
c,N

employs hO0(0)
Q

i
4

derived in Sec. 3.5. The uncertainty in f (0)0
c,N

is presently dominated by hadronic
inputs, and in (61) we neglect the small uncertainty (< 1%) from scale variation of µ

c

. Recent lattice
measurements of the charm matrix element in Refs. [73] and [74] have determined

f (0)0
c,N

=

(

0.10(3) [73]

0.07(3) [74]
, (62)

which are consistent within large errors with (61). As discussed below (39), we find discrepancies
with previous determinations of the heavy quark scalar matrix elements [51, 52].14 Nonetheless, due
to a large O(30%) uncertainty in �, the resulting numerical values are consistent. A nonperturbative
determination of the charm and light quark matrix elements in 4-flavor lattice QCD would avoid
uncertainties associated with the charm scale µ

c

⇠ m
c

, such as O(1/m
c

) power corrections and
O(↵

s

) perturbative corrections. In Sec. 6, we investigate the evaluation of the spin-independent
cross section for heavy electroweak-charged WIMPs in the 4-flavor theory.

14In Ref. [72], the result of Ref. [52] was presented with updated inputs.
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masses in the n
f

and n
f

� 1 flavor theories are defined to include the induced e↵ects of the heavy
quark, we have simply M

qq

⌘ 1. These arguments imply from (33) a solution for all elements in
terms of M

gQ

and M
qQ

:

M
qq

⌘ 1 , M
qq

0 ⌘ 0 , M
gq

⌘ 0 ,

M
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=
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=
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m
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. (35)

Let us consider solutions for the elements of M (0) expanded in powers of ↵
s

,

M =
1
X

n=0

 

↵
(nf+1)

s

(µ
Q

)

⇡

!

n

M (n) , (36)

where the superscript signifies that the strong coupling constant is defined in the (n
f

+ 1)-flavor
theory. Employing this ↵

s

counting and the O(↵4

s

) results for M
gQ

and M
qQ

from Ref. [48], we may
solve the relations in Eq. (34) order by order.12 Let us work in the MS scheme, employing results for

M
gQ

and M
qQ

, as well as for the nontrivial matching condition between ↵
(nf )
s

(µ
Q

) and ↵
(nf+1)

s

(µ
Q

)
found in Ref. [48], expressed in terms of the heavy quark mass m

Q

defined in this scheme. Working
through NLO, we recover the result in Table 6. At NNLO, we find

M (2)
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=
11

36
� 11

6
log
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+
1

9
log2

µ
Q

m
Q

. (37)

At NNNLO, we find
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M (2)

qg

= �89

54
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� 8
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Q
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Q

. (38)

Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by

hO0(0)
Q

i/m
N

= M
qQ

�+M
gQ

2

�̃(nf )
[1� (1� �

(nf )
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=
1

3�
(nf )

0

(

2� 2�

)

+
↵
(nf+1)

s

(µ
Q

)

⇡

 

1

3�
(nf )

0

!

2

(

57

2
� 321�

2
+ 8n

f

)

12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
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12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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⇣(3)

+ n
f

"

� 2633

10368
+

67

96
log

µ
Q

m
Q

� 1

3
log2

µ
Q

m
Q

#

,

M (2)

qg

= �89

54
+

20

9
log

µ
Q

m
Q

� 8

3
log2

µ
Q

m
Q

. (38)

Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by

hO0(0)
Q

i/m
N

= M
qQ

�+M
gQ

2

�̃(nf )
[1� (1� �

(nf )
m

)�]

=
1

3�
(nf )

0

(

2� 2�

)

+
↵
(nf+1)

s

(µ
Q

)

⇡

 

1

3�
(nf )

0

!

2

(

57

2
� 321�

2
+ 8n

f

)

12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
pert

doublet

triplet

20 40 60 80 100 12010-51

10-50

10-49

10-48

10-47

hN |mcc̄c|Ni (MeV)

�
S
I
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

q f (0)

q,p

f (0)

q,n

u 0.016(5)(3)(1) 0.014(5)(+2

�3

)(1)

d 0.029(9)(3)(2) 0.034(9)(+3

�2

)(2)

s 0.043(21) 0.043(21)

Table 10: Scale independent scalar form factors for the proton and neutron for light quark flavors
u, d, s. The first, second and third uncertainties are from ⌃

⇡N

, m
u

/m
d

and ⌃�, respectively. As
discussed below Eq. (60), the parameterization in Eq. (59) leads to highly correlated uncertainties in

f (0)

u,N

and f (0)

d,N

.

where we employ the quark mass ratios adopted from PDG values [68] (symmetrizing errors),

R
ud

⌘ m
u

m
d

= 0.49± 0.13 , R
sd

⌘ m
s

m
d

= 19.5± 2.5 . (60)

The resulting numerical values for the light quark scalar matrix elements are collected in Table 10.

The uncertainties in f (0)

u,N

and f (0)

d,N

are highly correlated, and for applications we use Eq. (59), varying
the inputs ⌃

⇡N

, R
ud

and ⌃� whose uncertainties are taken as uncorrelated. For both proton and

neutron, the gluon matrix element f (0)

g,N

is obtained from the quark matrix elements via the sum rule
in Eq. (56).

From the analysis of heavy quark matching conditions in Sec. 3.5, we may determine the scalar
matrix elements of heavy quark flavors. For definiteness, let us consider 4-flavor QCD with a heavy
charm quark. Denoting quantities in the 4-flavor (3-flavor) theory with (without) a prime, the results
in Eqs. (39) and (40) yield

f (0)0
c,N

= 0.083� 0.103�+O(↵4

s

, 1/m
c

) = 0.073(3) +O(↵4

s

, 1/m
c

) ,

f (0)0
q,N

= f (0)

q,N

+O(1/m
c

) , (61)

where we use � ⇡ ⌃
⇡N

/m
N

+ f (0)

s,N

= 0.089(26)MeV, neglecting the small contribution from ⌃�. An

expression for f (0)0
c,N

in terms of ↵0
s

(µ
c

) is given in Appendix B; in particular, the O(↵3

s

) term in f (0)0
c,N

employs hO0(0)
Q

i
4

derived in Sec. 3.5. The uncertainty in f (0)0
c,N

is presently dominated by hadronic
inputs, and in (61) we neglect the small uncertainty (< 1%) from scale variation of µ

c

. Recent lattice
measurements of the charm matrix element in Refs. [73] and [74] have determined

f (0)0
c,N

=

(

0.10(3) [73]

0.07(3) [74]
, (62)

which are consistent within large errors with (61). As discussed below (39), we find discrepancies
with previous determinations of the heavy quark scalar matrix elements [51, 52].14 Nonetheless, due
to a large O(30%) uncertainty in �, the resulting numerical values are consistent. A nonperturbative
determination of the charm and light quark matrix elements in 4-flavor lattice QCD would avoid
uncertainties associated with the charm scale µ

c

⇠ m
c

, such as O(1/m
c

) power corrections and
O(↵

s

) perturbative corrections. In Sec. 6, we investigate the evaluation of the spin-independent
cross section for heavy electroweak-charged WIMPs in the 4-flavor theory.

14In Ref. [72], the result of Ref. [52] was presented with updated inputs.
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masses in the n
f

and n
f

� 1 flavor theories are defined to include the induced e↵ects of the heavy
quark, we have simply M

qq

⌘ 1. These arguments imply from (33) a solution for all elements in
terms of M

gQ

and M
qQ

:

M
qq

⌘ 1 , M
qq

0 ⌘ 0 , M
gq

⌘ 0 ,

M
gg

=
�̃(nf )

�̃(nf+1)

� 2

�̃(nf+1)

⇥

1� �
(nf+1)

m

⇤

M
gQ

,

M
gq

=
2

�̃(nf+1)

⇥

�
(nf+1)

m

� �
(nf )
m

⇤� 2

�̃(nf+1)

⇥

1� �
(nf+1)

m

⇤

M
qQ

. (35)

Let us consider solutions for the elements of M (0) expanded in powers of ↵
s

,

M =
1
X

n=0

 

↵
(nf+1)

s

(µ
Q

)

⇡

!

n

M (n) , (36)

where the superscript signifies that the strong coupling constant is defined in the (n
f

+ 1)-flavor
theory. Employing this ↵

s

counting and the O(↵4

s

) results for M
gQ

and M
qQ

from Ref. [48], we may
solve the relations in Eq. (34) order by order.12 Let us work in the MS scheme, employing results for

M
gQ

and M
qQ

, as well as for the nontrivial matching condition between ↵
(nf )
s

(µ
Q

) and ↵
(nf+1)

s

(µ
Q

)
found in Ref. [48], expressed in terms of the heavy quark mass m

Q

defined in this scheme. Working
through NLO, we recover the result in Table 6. At NNLO, we find

M (2)

gg

=
11

36
� 11

6
log

µ
Q

m
Q

+
1

9
log2

µ
Q

m
Q

. (37)

At NNNLO, we find

M (3)

gg

=
564731

41472
� 2821

288
log

µ
Q

m
Q

+
3

16
log2

µ
Q

m
Q

� 1

27
log3

µ
Q

m
Q

� 82043

9216
⇣(3)

+ n
f

"

� 2633

10368
+

67

96
log

µ
Q

m
Q

� 1

3
log2

µ
Q

m
Q
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,

M (2)

qg

= �89

54
+

20

9
log

µ
Q

m
Q

� 8

3
log2

µ
Q

m
Q

. (38)

Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by

hO0(0)
Q

i/m
N

= M
qQ

�+M
gQ

2

�̃(nf )
[1� (1� �

(nf )
m

)�]

=
1

3�
(nf )

0

(

2� 2�

)

+
↵
(nf+1)

s

(µ
Q

)
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1

3�
(nf )

0

!

2

(
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2
� 321�

2
+ 8n

f

)

12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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Remaining relations are determined by sum rule in terms of MgQ and MqQ

MgQ and MqQ known through 
3 loops:

New result for heavy quark 
scalar matrix element of nucleon: 

Chetyrkin et al. (1997)

New results for gluon-induced 
decoupling relations

Hill, Solon (2014)
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2

(pure states), the above lagrangian is completely
specified by electroweak quantum numbers since
gauge-invariance implies f(H) = 0, and �m can be
chosen to vanish for degenerate heavy-particle states.
In particular, the first term in (1) does not depend
on the WIMP mass, spin or other properties beyond
the choice of gauge quantum numbers. Model de-
pendence is systematically encoded in operator co-
e�cients representing 1/M corrections. For exten-
sions with two electroweak multiplets (mixed states),
f(H) and �m are non-vanishing and depend on �,
the mass splitting of the multiplets, and , their cou-
pling strength mediated by the Higgs field.

Weak-scale matching. Interactions of the lightest,
electrically neutral, self-conjugate WIMP, �v, with
quarks and gluons, relevant for spin-independent (SI),
low-velocity scattering with a nucleon, are given at
energies E ⌧ mW by the EFT

L�v,SM =
�̄v�v

m3
W

X

S

X

q

c(S)
q O(S)

q +c(S)
g O(S)

g

�
+. . . ,

(2)

where q = u, d, s, c, b is an active quark flavor and
we have chosen QCD quark and gluon operators of

definite spin, S = 0, 2: O(0)
q = mq q̄q, O

(0)
g = (GA

µ⌫)
2,

O(2)µ⌫
q = 1

2 q̄
⇣
�{µiD⌫}

� � gµ⌫iD/ �/4
⌘
q, and O(2)µ⌫

g =

�GAµ�GA⌫
� + gµ⌫(GA

↵�)
2/4. Here Dµ

� ⌘
�!
Dµ � �Dµ,

and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 denotes sym-
metrization. The ellipsis in Eq. 2 denotes higher-
dimension operators suppressed by powers of 1/mW .

We match EFTs (1) and (2) at reference scale
µt ⇠ mW ⇠ mt by integrating out weak scale par-
ticles W±, Z0, h0 and t. In the heavy WIMP limit,
matching coe�cients, ci, of (2) may be expanded as

ci = ci,0 + ci,1
mW

M
+ . . . . (3)

We compute the complete set of twelve matching co-
e�cients ci,0 at leading order in perturbation theory.

Weak-scale matching for mixed states requires
renormalization of the Higgs-WIMP vertex for a con-
sistent evaluation of loop-level amplitudes, and a gen-
eralized basis of heavy-particle loop integrals to ac-
count for non-vanishing residual masses. Details of
the matching computation can be found in [4].

QCD analysis. Having encoded physics of the
heavy WIMP sector in matching coe�cients of (2),
the remaining analysis is independent of the M �
mW assumption, and consists of renormalization
group (RG) running to a low scale µ0 < mc, matching

N
LO

N
N
LO

NN
NL
O

LO

90 100 110 120 130 14010-50

10-49

10-48

10-47

mh (GeV)

�
S
I
(c
m

2
)

FIG. 1: SI cross section for low-velocity scattering on
the proton as a function of mh, for the pure-triplet case.
Labels refer to inclusion of LO, NLO, NNLO and NNNLO
corrections in the RG running from µc to µ0 and in the
spin-0 gluon matrix element. Bands represent 1� uncer-
tainty from neglected higher order pQCD corrections.

at heavy quark thresholds, and evaluating hadronic
matrix elements. This module is systematically im-
provable in subleading corrections and is applicable
to generic direct detection calculations. An extension
of the operator basis would allow robust connections
between contact interactions constrained at colliders
and low-energy observables of direct detection [7].
RG evolution accounts for perturbative corrections
involving large logarithms, e.g., ↵s(µ0) logmt/µ0.
Fig. 1 illustrates the impact of higher order pQCD
corrections. We collect in Refs. [3, 5] the details
of mapping high-scale matching coe�cients onto the
low-energy theory where hadronic matrix elements
are evaluated [24]. Cross sections for scattering on
the neutron and proton are numerically similar; we
present results for the latter.

Pure-state cross sections. Consider the situation
where the SM is extended by a single electroweak
multiplet. For definiteness let us take the cases of
a Majorana SU(2)W triplet of Y = 0, and a Dirac
SU(2)W doublet of Y = 1

2 . For the doublet we
assume that higher-dimension operators cause the
mass eigenstates after electroweak symmetry break-
ing (EWSB) to be self-conjugate combinations D1

andD2, thus forbidding a tree-level �̄v�vZ0 coupling,
and moreover that inelastic scattering is suppressed.

Upon performing weak-scale matching [4] and map-
ping to a low-energy theory for evaluation of matrix
elements [5], we obtain parameter-free cross section
predictions as illustrated in Fig. 2. The triplet cross
section is

�T
SI = 1.3+1.2

�0.5
+0.4
�0.3 ⇥ 10�47 cm2, (4)

where the first (second) error represents 1� uncer-

Impact of NLO corrections on wino-like direct detection cross section: 
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• WIMP scattering + high-scale matching: 
Heavy WIMP Effective Theory (HWET)

• WIMP scattering + collider production, 
connecting weak scale to hadronic scale: 
heavy quark decoupling 

• WIMP annihilation: HWET+Soft Collinear 
Effective Theory
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DM

DM

γ

γ

Consider heavy neutral wino/WISP/heavy triplet WIMP 
annihilating to neutral gauge bosons

Intricate process: loop induced, and interplay of 4 effects:  

- hard annihilation (high scale matching) 

- Sudakov suppression (RG evolution)

- Sommerfeld enhancement (nonperturbative wavefunction 
solution)

Treated systematically in a sequence of matching+running in EFT

- Collinear anomaly (low scale matching)
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A systematic treatment is not optional, especially for large mass
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Figure 4: Sommerfeld enhanced annihilation cross sections for two fixed order approximations. The
blue dotted curve truncates the w factors at O(↵2), while the green dashed line is the one-loop result
including O(↵3) contributions in w± and w±00

and the first non-vanishing O(↵4) contribution in w
00

.
Note that for M & 6 TeV, the one-loop cross section becomes negative due to the presence of a large
Sudakov logarithm with a negative coe�cient. For illustration we include the orange dot-dashed line
which gives the naive cross section computed from w

00

neglecting wave function enhancements. In
this plot v = 10�3 and � = 0.17 GeV.

3.5 Fixed Order Results

Armed with the Sommerfeld matrix sij , and the elements of the W matrix given in (32), we are in

a position to compute the dark matter annihilation cross section to line photons at both tree-level

(by simply truncating the ↵ expansion in (32)) and one loop. The results of these two calculations

are shown in Fig. 4, where we have taken � = 0.17 GeV and the relative velocity v = 10�3 for the

numerical evaluation of the Sommerfeld enhancement. Clearly the one-loop result is suppressed with

respect to the tree-level result. Specifically, we find that at M = 3 TeV (a mass of interest for the

thermal wino), the ratio �
tree

/�
1-loop

⇠ 5. However the perturbative expansion is not under control,

as seen from the fact that the fixed order ↵3 cross section becomes negative for M & 6 TeV (due to

the large Sudakov logarithm, and a further mixing induced contribution from w±;00

).

These considerations motivate introducing an EFT description in order to separate the scales

mW from 2M and resum the large logarithms, regaining control over the perturbative expansion.

The first step will be to derive an appropriate EFT description that captures all of the relevant

momentum regions of the full theory. This is the topic of the next section.
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cusp anomalous dimension. We give the ratios (�v)
tree

/(�v)
LL

and (�v)
1-loop

/(�v)
LL

of the full

Sommerfeld enhanced cross sections in Figure 11. At M = 3TeV the resummed result is suppressed

by a factor of ⇠ 3 with respect to tree level.

� � � � ��-�
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�
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TeV
⇤

(� v)tree/(� v)LL
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Figure 11: This plot shows the ratio of (� v)
tree

/(�v)
LL

(blue dotted) and (� v)
1-loop

/(�v)
LL

(green
dashed) including the e↵ects of the Sommerfeld enhancement.

To illustrate the impact of higher order perturbative corrections, let us investigate the residual

renormalization scale dependence of the absorptive part of the potential at LL and NLL accuracy.

We focus here on w± which has the largest impact on the neutral WIMP annihilation cross section

to photons. For LL order, we include the LL solution to the RG evolution and tree-level matching

coe�cients at the hard and intermediate scales, but neglect the collinear anomaly contribution. For

NLL order, we include the NLL solution to the RG evolution, tree-level matching coe�cients at the

hard and intermediate scales and the collinear anomaly contribution through O(↵).

The results of this study are shown in Figure 12 where we plot w± in units of M2/⇡↵2 in which the

tree-level result is unity. The purple and grey bands are the LL and NLL results, respectively, where

the uncertainty is from the combined variation of scales mW /2 < µL < 2mW and M < µH < 4M . For

comparison, we also include the fixed O(↵3) result (dashed green line), and the LL resummed result

(red band) employed for �v in Figure 11 above. The fixed order result has no explicit µ dependence,

while the uncertainty for the red band is from the combined variation of scales mW /2 < µL < 2mW

and M < µH < 4M . The sizable uncertainty in the LL result (purple band) can be traced to the

scale variation of the Sudakov double log, which cancels at NLL order with the variation of the O(↵)

39

tree level severely overestimates
cross section

one loop severely underestimates 
cross section
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Figure 1: One loop contributions to matrix elements of Oi
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Figure 2: Diagrams contributing to hard scale matching for neutral WIMPs. Wavy lines are photons,
zigzag lines are W± bosons.

For neutral WIMP annihilation, the relevant amputated loop diagrams are shown in Fig. 2.
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where C
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depends on whether the matrix element is evaluated at the neutral or charged WIMP

threshold:
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We have here ignored higher order corrections involving the mass splitting (cf. (22) below). For

5For a single channel, the absorptive part is identified with the imaginary part, AbsM ⌘ ImM.
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Here the circular blob denotes insertion of iW , while the elliptical blob denotes insertion of V . For

neutral particle production at threshold, k = k0 = 0, this gives
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where m� is a photon mass regulating IR divergences.
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Evaluated at the threshold for charged particle production, k0 = 0 and k2 = 2M
0

�, this expression

yields
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For the neutral channel:
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We have here ignored higher order corrections involving the mass splitting (cf. (22) below). For

5For a single channel, the absorptive part is identified with the imaginary part, AbsM ⌘ ImM.
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Match onto SCET at hard scale μ∼2M:

Resummation governed by cusp: 

4.3 Electroweak Symmetric SCET Feynman Rules

In this section, we give the Feynman rules resulting from this theory. Note that the presence of the

hard-collinear gauge boson operators A in the definition of the Oi implies that there can be an arbi-

trary number of gauge boson emissions from the operator vertex insertion. We use ‘t Hooft-Feynman

gauge in the following. The Feynman rules for operator insertions of O
1,2 are:

Mv + k0, j

Mv + k, i

p0, b, ⌫

p, a, µ

Om = g2(T ab
m + T ba

m )ijg
µ⌫
? , (52)

where the color structures defined as

(T ab
1

)ij = �ab�ij , (T ab
2

)ij = (tatb)ij , (53)

are taken from (51). Note that this involves one hardcollinear (top of diagram) and one anti-

hardcollinear (bottom of diagram) particle. We need also the Feynman rule with an additional

hardcollinear, or anti-hardcollinear gauge boson from the operator vertex. The Feynman rule for two

hardcollinear and one anti-hardcollinear emissions is

Mv + k0, j

Mv + k, i

p0, a, µ

q, d, ⇢

p, c, ⌫

Om = �2g3(T ba
m )ij f bcd

✓

gµ⌫?
n̄⇢

n̄ · q
� gµ⇢?

n̄⌫

n̄ · p

◆

. (54)

Similar expressions, with n $ n̄, hold for one hardcollinear and two anti-hardcollinear emissions.

The three and four-point vertices involving all hc or all hc gauge bosons are identical to the usual

QCD results. As in (45), the leading order interaction of soft gauge bosons with hard-collinear gauge

bosons is given by the multipole expansion in powers of � of

L
hc, s =

g

2
fabcn · Ac

sA
a
hcµ(2@µn̄ · Ab

hc

� n̄ · @Ab µ
hc

) + . . . , (55)

23

= c(µ2 ⇠ 4M2) x

where �̂ denotes the anomalous dimension. With Ẑ given in (69), we obtain
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A + O(g4). (73)

The logarithmic scaling of the diagonal elements is a universal feature related to the cusp anomalous

dimension of Wilson loops, which we will identify as the origin of the large Sudakov logarithm in

(19). The non-cusp part of the anomalous dimension depends on the gauge representations of the

external states. It is convenient to rotate to a basis of operators with definite isospin, O0
1

= O
1

and

O0
2

= 2O
1

/3 � O
2

in SU(2) representations with R = 0 and R = 2, respectively. In this basis the

anomalous dimension is diagonal,
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We may then identify �̂0 with an ansatz for the anomalous dimension of an operator describing a

particle of mass 2M in gauge representation R decaying into two massless gauge bosons in gauge

representations r and r0 [44–47],
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which makes the connection with the cusp anomalous dimension �
cusp

explicit. Here, the term

involving the beta function �(g) = dg/d log µ appears due to the factor of g2 in the operator definition.

Employing the expansions of the anomalous dimensions,
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and the beta function �(↵
2

) = d↵
2

/d log µ, we collect the coe�cients necessary for resummation

through NLL order in Table 1. From the one-loop results given in the first column of Table 1, we

recover (74) from the ansatz in (75), i.e., �̂0 = diag(�(0), �(2)).

6.2 Sudakov Resummation

Let us consider the solution for coe�cient scale evolution governed by (72). We write

~c(µL) = Ŝ(µL, µH)~c(µH) = S
cusp

(µL, µH) ŜR(µL, µH)~c(µH) , (77)
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Figure 2: Diagrams contributing to hard scale matching for neutral WIMPs. Wavy lines are photons,
zigzag lines are W± bosons.

For neutral WIMP annihilation, the relevant amputated loop diagrams are shown in Fig. 2.
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where C
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depends on whether the matrix element is evaluated at the neutral or charged WIMP

threshold:
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We have here ignored higher order corrections involving the mass splitting (cf. (22) below). For

5For a single channel, the absorptive part is identified with the imaginary part, AbsM ⌘ ImM.
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4.3 Electroweak Symmetric SCET Feynman Rules
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Similar expressions, with n $ n̄, hold for one hardcollinear and two anti-hardcollinear emissions.
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We may then identify �̂0 with an ansatz for the anomalous dimension of an operator describing a

particle of mass 2M in gauge representation R decaying into two massless gauge bosons in gauge
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which makes the connection with the cusp anomalous dimension �
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explicit. Here, the term

involving the beta function �(g) = dg/d log µ appears due to the factor of g2 in the operator definition.
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and the beta function �(↵
2

) = d↵
2

/d log µ, we collect the coe�cients necessary for resummation

through NLL order in Table 1. From the one-loop results given in the first column of Table 1, we

recover (74) from the ansatz in (75), i.e., �̂0 = diag(�(0), �(2)).

6.2 Sudakov Resummation

Let us consider the solution for coe�cient scale evolution governed by (72). We write

~c(µL) = Ŝ(µL, µH)~c(µH) = S
cusp

(µL, µH) ŜR(µL, µH)~c(µH) , (77)
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Annihilation of nonrelativistic particles described by QM:

H =
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+ V + iW
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r
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e.g.

Bound state annihilation:

Asymptotic plane wave annihilation:
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Heavy SU(2) triplet: multi-channel annihilation process:

asymptotic neutral channel, but leading hard annihilation 
through charged channel

where the factors
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2E for each external particle convert to nonrelativistic state normalization (de-
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Figure 2: Diagrams contributing to hard scale matching for neutral WIMPs. Wavy lines are photons,
zigzag lines are W± bosons.

For neutral WIMP annihilation, the relevant amputated loop diagrams are shown in Fig. 2.

Considering kinematics at both the neutral and charged WIMP thresholds, we have
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We have here ignored higher order corrections involving the mass splitting (cf. (22) below). For

5For a single channel, the absorptive part is identified with the imaginary part, AbsM ⌘ ImM.
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We have here ignored higher order corrections involving the mass splitting (cf. (22) below). For

5For a single channel, the absorptive part is identified with the imaginary part, AbsM ⌘ ImM.
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Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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2
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+
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
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+
m2

W

M2



5 log2
mW

2M
� 12 log

mW

2M
� 2 log

mZ

2M
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2M
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20

3
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� 7i⇡
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�

+ O(↵, m� , �/mW ,
p

�/M, m3

W /M3)

�

. (19)

The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.
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charged states lifted by EWSB effects: 

3.1 Mass correction from electroweak symmetry breaking

We may evaluate the heavy scalar self energy to obtain mass corrections,

� i⌃(p) =
W

p
+

Z
+

�

+ . . . . (14)

The shift in mass due to electroweak symmetry breaking appears as a nonvanishing value of
⌃(p) at v ·p = 0. We find at leading order in the 1/M expansion, and first order in perturbation
theory,

�M = ↵2mW


�1

2
J2 + sin2 ✓W

2
J2
3

�
. (15)

In particular, with Q = J3 + Y = J3 for Y = 0, the mass of each charged state is lifted
proportional to its squared charge relative to the neutral component,

M(Q) �M(Q=0) = ↵2Q
2mW sin2 ✓W

2
+O(1/M) ⇡ (170MeV)Q2 . (16)

Subleading corrections can be similarly evaluated in the e↵ective theory. Since no additional
operators appear at O(1/M0), the result (16) is model independent.4

3.2 Operator basis

The e↵ective theory after electroweak symmetry breaking will include: the heavy scalar QED
theory for each of the electric charge eigenstates, with mass determined as in (15);5 the
Standard Model lagrangian with W,Z, h, t integrated out; and interactions,

L = L�0 + LSM + L�0,SM + . . . , (17)

where the ellipsis denotes terms containing electrically charged heavy scalars. For the electri-
cally neutral scalar,

L�0 = �⇤
v,Q=0

⇢
iv · @ � @2

?
2M(Q=0)

+O(1/m3
W )

�
�v,Q=0 . (18)

Note that enforcing the reality condition (7) implies the vanishing of cD (= cM).
Interactions with Standard Model fields begin at order 1/m3

W . We restrict attention to
quark and gluon operators (neglecting lepton and photon operators) and again focus on the
neutral �v,Q=0 component, dropping the Q = 0 subscript in the following. Mixing with charged
scalars will become relevant at order 1/m4

W in nuclear scattering computations; similarly, we
restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators

4
The mass splitting (16) appears in limits of particular models, e.g. [1, 7, 8].

5
We define the pole mass to include the contributions induced by electroweak symmetry breaking, as

opposed to introducing residual mass terms for di↵erent charge eigenstates [9].

5

0

0

+

-
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In particular, ⌃AZ(0) receives contributions only from the W± boson loop, and is independent of the

additional scalar triplet.

The amplitudes (17), (19) and renormalization constants (23), (24), determine the physical one

loop amplitudes for heavy scalar annihilation to photons, in terms of physical parameters (↵, mW ,

mZ , M , �). One can see from these equations that there are factors of the type M/mW that

result from the so-called potential region of the loop integrals. It is exactly these factors that are

resummed by including the Sommerfeld enhancement. Isolating the hard annihilation contribution

to the W matrix from terms that derive from the potential region requires working to higher order

in quantum mechanics. This is the subject of the next section, where the equivalent quantum

mechanics calculation is performed. This will yield the second side of the matching condition and

will demonstrate a systematic removal of the potential region.

3.4 Determining W : Quantum Mechanics

In this section, the matching conditions for the absorptive part of the potential W are computed in

quantum mechanics. Working in the plane wave basis, we write

D

k0
�

�

�

W (�)
�

�

�

k
E

⌘
0

@

w(�)
00

w(�)
00;±

w(�)
±;00

w(�)
±

1

A , (25)

where w±;00

= w⇤
00;± and the superscript (�) denotes restriction to �� final states. We work through

lowest non-vanishing order in ↵ for each of the elements w(�)
ij , but will also retain the first sub-leading

term for w(�)
± so that our computation contains complete one-loop corrections (see (32) for explicit

expressions). Working in the framework of “old-fashioned” perturbation theory, the nonrelativistic

scattering amplitude is given by the Born series for the matrix valued potential of (6). What follows

is the explicit computation of these matrix elements. In the following, we restrict to �� final states

and omit the superscript on wij .

For the charged channel:

±hk0|T |ki± ! + + + . . .

= iW± + iW± ⌦ V± + V± ⌦ iW± + O�

↵4

�

= ±hk0|iW |ki± +

Z

d3p

(2⇡)3

Z

d3p0

(2⇡)3
±hk0|V |pi± ±hp|(E � H

0

)�1|p0i± ±hp0|iW |ki±

13

� 1

2
g2
2

h

�

��
�

2

W+

µ W+µ +
�

�
+

�

2

W�
µ W�µ

i

+ g2
2

�

�2

0

+ �
+

��
�

W+

µ W�µ , (5)

from which it is straightforward to read o↵ the Feynman rules. Since we will be working to leading

order in the small ratio mW /M and leading loop order, we neglect renormalizable self-couplings of

the scalar field, ⇠ �4, and Higgs interactions, ⇠ H†H�2. It would be straightforward to include these

couplings in an extended analysis.

3 Fixed Order Matching onto Quantum Mechanics

To begin, let us match the WIMP annihilation process computed directly in the high scale field theory

onto a quantum mechanical Hamiltonian. This will make clear the separation between the hard

annihilation process and the wavefunction distortion. The former contributions arise from o↵shell

momentum regions of loop diagrams, and are represented by contributions to contact interactions

in the quantum mechanical Hamiltonian. The latter emerge from nearly onshell momentum regions,

and are reproduced by corresponding quantum mechanical potentials.

The general quantum mechanical Hamiltonian appropriate for the center-of-mass frame for the

two-particle system takes the form2

H =
p2

2Mr
+ � + V + iW , (6)

where V and W are Hermitian, Mr denotes reduced mass, and � is the residual mass matrix, which

captures the di↵erence in rest mass energy between the states of interest. In matrix notation, acting

on two components in the neutral-neutral (00) and charged-charged (+�) sectors, the kinetic energy

and residual mass terms are

p2

2Mr
+ � = p2

0

@

1

M0
0

0 1

M±

1

A +

0

@

0 0

0 2�

1

A , (7)

where the zero of energy is taken as 2M
0

and we define � = M± � M
0

. For notational convenience

we will set M
0

⌘ M in the following. The potential V + iW is determined by comparing the Born

series computed from this Hamiltonian,

hk0|T |ki = hk0|V + iW |ki + . . . , (8)

with the field theory prediction for the scattering amplitude.

2See e.g. [72]. A related formalism for treating velocity corrections in WIMP annihilation is given in [73,74].
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Below electroweak scale, match to QM

3.1 Determining V

The Hermitian potential V will capture the e↵ects of the long range force experienced by the WIMPs,

and W will encode the hard annihilation process via the optical theorem as discussed in Sec. 3.3.

Employing the Feynman rules for heavy scalars from (5), the result for V reads

hk0|V |ki =

0

B

@

0 �4⇡↵
2

h

1

(k0�k)2+m2
W

+ 1

(k0
+k)2+m2

W

i

�4⇡↵
2

h

1

(k0�k)2+m2
W

+ 1

(k0
+k)2+m2

W

i

�4⇡↵
h

1

(k0�k)2+m2
�

+
t�2
W

(k0�k)2+m2
Z

i

1

C

A

, (9)

where ↵
2

is the weak SU(2) coupling, ↵ is the electromagnetic coupling, mW , mZ are the W±, Z0

boson masses, and m� is an infinitesimal photon mass that is used to regulate IR divergences. In the

quantum field theory calculation the two terms in the o↵-diagonal elements of (9) arise from crossed

and uncrossed diagrams involving W± exchange, and the terms in the lower right entry are from

photon and Z0 exchange respectively. Equation (9) will be used in the old-fashioned perturbation

theory analysis, presented in Sec. 3.4 below, in order to determine the correct matching onto quantum

mechanics at one-loop order.

3.2 The Sommerfeld Enhancement

In order to compute the Sommerfeld enhancement, it is useful to Fourier transform V from (9) into

position space,

V S-wave =

0

@

0 �p
2↵2

r e�mW r

�p
2↵2

r e�mW r �↵
r � ↵2c2W

r e�mZr

1

A , (10)

where this result is appropriate for S-wave scattering states (at m� = 0). Then this matrix can be

used as the input to the S-wave Schrödinger equation to model the wave-functions of the neutral

and charged WIMP pairs, yielding the Sommerfeld enhancement. Specifically, we use the formalism

outlined in the Appendix of [75] to compute the physical annihilation cross section from quantum

mechanics, using (6) as an input. Indices i, j = 1, 2 refer to the (00), (+�) states respectively. For

the wave function ( i)j , the index i labels the asymptotic state and j is the component index for the

resulting solution. Given a choice of i, the boundary conditions employed are

( i(0))j ! �ij , j = 1, 2 , (11)

( i(1))
1

! eikr , (12)

( i(1))
2

!
8

<

:

 
Coulomb

: E � �i

e�kr : E < �i
, (13)
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In particular, ⌃AZ(0) receives contributions only from the W± boson loop, and is independent of the

additional scalar triplet.

The amplitudes (17), (19) and renormalization constants (23), (24), determine the physical one

loop amplitudes for heavy scalar annihilation to photons, in terms of physical parameters (↵, mW ,

mZ , M , �). One can see from these equations that there are factors of the type M/mW that

result from the so-called potential region of the loop integrals. It is exactly these factors that are

resummed by including the Sommerfeld enhancement. Isolating the hard annihilation contribution

to the W matrix from terms that derive from the potential region requires working to higher order

in quantum mechanics. This is the subject of the next section, where the equivalent quantum

mechanics calculation is performed. This will yield the second side of the matching condition and

will demonstrate a systematic removal of the potential region.

3.4 Determining W : Quantum Mechanics

In this section, the matching conditions for the absorptive part of the potential W are computed in
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where w±;00

= w⇤
00;± and the superscript (�) denotes restriction to �� final states. We work through

lowest non-vanishing order in ↵ for each of the elements w(�)
ij , but will also retain the first sub-leading

term for w(�)
± so that our computation contains complete one-loop corrections (see (32) for explicit

expressions). Working in the framework of “old-fashioned” perturbation theory, the nonrelativistic

scattering amplitude is given by the Born series for the matrix valued potential of (6). What follows

is the explicit computation of these matrix elements. In the following, we restrict to �� final states

and omit the superscript on wij .

For the charged channel:

±hk0|T |ki± ! + + + . . .

= iW± + iW± ⌦ V± + V± ⌦ iW± + O�

↵4

�

= ±hk0|iW |ki± +
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=

where ki = M
p

1 � �i/E, E is the kinetic energy of the WIMP system, �i is only non-zero when

i = 2, and  
Coulomb

is the wavefunction for the Coulomb scattering solution.3 Once the solutions  

have been obtained, the Sommerfeld enhancement matrix is given by

sij = ( i(1))j . (14)

The cross section can then be computed using

�iv = �2
X

j,j0

sij WS-wave
jj0 s⇤ij0 , (15)

where WS-wave denotes the absorptive part of the potential for S-wave scattering states.4

The couplings and masses are defined as their on-shell values. In particular, here we are using

the shorthand ↵
2

= ↵s�2

W with s2W = 1 � c2W and cW = mW /mZ . All that is required to determine

an annihilation cross section are (Particle Data Group [76]) inputs for ↵, the W± and Z0 masses,

along with the WIMP mass M , the charged-neutral mass splitting �, the relative velocity v, and the

2 ⇥ 2 Hermitian matrix W . Now that the formalism for calculating the wave function factors has

been explained, we move to the determination of the hard-annihilation contribution to the potential

W to one-loop order by matching field theory onto quantum mechanics.

3.3 Determining W : Full Theory

The most straightforward way to determine the absorptive part of the potential, W , from field theory

is through use of the optical theorem. Matching is done at a convenient kinematic point, specifically

the two-particle threshold for neutral or charged WIMPs for diagonal elements of W , or at the two-

particle charged WIMP threshold for o↵-diagonal elements (such that the amplitude describes an

on-shell physical process).

The discontinuity arising from two-photon final states is found to be

iDiscM
NR

⇣

[��]i ! [��]f
⌘

=

= � 1

8⇡

1

(
p

2Ei)2(
p

2Ef )2
M

⇣

[��]i ! ��
⌘

M
⇣

[��]f ! ��
⌘⇤

, (16)

3Note that to achieve numerical stability, we furthermore strip o↵ the plane-wave/Coulomb factors as outlined in
the Appendix of [41].

4For the contact interaction W , this amounts to the replacements W11 ! W11/2, W12 ! W12/
p
2, W21 ! W21/

p
2,

W22 ! W22 starting from the plane wave basis (25).
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H =
p2

2Mr
+�+ V + iW}

SCET = QM

Annihilation rate given by
�v = �2h |W i = �2 ⇤(0)iWij (0)j
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Nontrivial wavefunction effects:

� � � � ��

��-��

��-��

��-��

��-��

��-��

��-��

��-��

M
⇥

TeV
⇤

�
v
⇥

cm
3
/s
⇤

Figure 4: Sommerfeld enhanced annihilation cross sections for two fixed order approximations. The
blue dotted curve truncates the w factors at O(↵2), while the green dashed line is the one-loop result
including O(↵3) contributions in w± and w±00

and the first non-vanishing O(↵4) contribution in w
00

.
Note that for M & 6 TeV, the one-loop cross section becomes negative due to the presence of a large
Sudakov logarithm with a negative coe�cient. For illustration we include the orange dot-dashed line
which gives the naive cross section computed from w

00

neglecting wave function enhancements. In
this plot v = 10�3 and � = 0.17 GeV.

3.5 Fixed Order Results

Armed with the Sommerfeld matrix sij , and the elements of the W matrix given in (32), we are in

a position to compute the dark matter annihilation cross section to line photons at both tree-level

(by simply truncating the ↵ expansion in (32)) and one loop. The results of these two calculations

are shown in Fig. 4, where we have taken � = 0.17 GeV and the relative velocity v = 10�3 for the

numerical evaluation of the Sommerfeld enhancement. Clearly the one-loop result is suppressed with

respect to the tree-level result. Specifically, we find that at M = 3 TeV (a mass of interest for the

thermal wino), the ratio �
tree

/�
1-loop

⇠ 5. However the perturbative expansion is not under control,

as seen from the fact that the fixed order ↵3 cross section becomes negative for M & 6 TeV (due to

the large Sudakov logarithm, and a further mixing induced contribution from w±;00

).

These considerations motivate introducing an EFT description in order to separate the scales

mW from 2M and resum the large logarithms, regaining control over the perturbative expansion.

The first step will be to derive an appropriate EFT description that captures all of the relevant

momentum regions of the full theory. This is the topic of the next section.

16

one loop

tree level

one loop, neglect wavefunction 
enhancement
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Recall that the messenger modes introduce a new scale

collinear :

collinear

0
:

messenger :

pµ ⇠ Q(1,�2,�)

pµ ⇠ Q(�2,�2,�2)

pµ ⇠ Q(�2, 1,�)

p2messenger ⇠
p2p02

Q2
⌧ p2

This allows large logarithms to sneak in the back door

element for one-loop contributions to the annihilation of two neutral heavy particle into two photons.

Including the appropriate on-shell renormalization constants, we find
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, (86)

where the only dependence on the threshold is captured by C
potential

, which is given in (18).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: One loop contributions to matrix elements of Oi for neutral WIMPs. Double straight lines
are heavy WIMPs, wavy lines are photons, and jagged lines are W± bosons.

Let us compute the diagrams in Fig. 9 relevant to the charged annihilation at kµ = �vµ, i.e., the

threshold annihilation for charged states (in comparison to above, we include factors of g and sW ).

The renormalized amplitudes are
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. (87)

Note that we have taken nG = 3 in both (86) and (87).
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element for one-loop contributions to the annihilation of two neutral heavy particle into two photons.

Including the appropriate on-shell renormalization constants, we find
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where the only dependence on the threshold is captured by C
potential

, which is given in (18).
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are heavy WIMPs, wavy lines are photons, and jagged lines are W± bosons.

Let us compute the diagrams in Fig. 9 relevant to the charged annihilation at kµ = �vµ, i.e., the

threshold annihilation for charged states (in comparison to above, we include factors of g and sW ).

The renormalized amplitudes are
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Note that we have taken nG = 3 in both (86) and (87).
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element for one-loop contributions to the annihilation of two neutral heavy particle into two photons.

Including the appropriate on-shell renormalization constants, we find
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where the only dependence on the threshold is captured by C
potential

, which is given in (18).
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Figure 8: One loop contributions to matrix elements of Oi for neutral WIMPs. Double straight lines
are heavy WIMPs, wavy lines are photons, and jagged lines are W± bosons.

Let us compute the diagrams in Fig. 9 relevant to the charged annihilation at kµ = �vµ, i.e., the

threshold annihilation for charged states (in comparison to above, we include factors of g and sW ).
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Note that we have taken nG = 3 in both (86) and (87).
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Note that we have taken nG = 3 in both (86) and (87).
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Happily, the dependence on the large scale may be 
resummed

Basic idea: 

d

d logµ
[observable] = 0

The only thing whose variation can cancel this dependence is 

log

µ2

M2
log

µ2

m2
W

And so the coefficient is tied to the universal cusp structure

Can now resum these 
subleading logs: 

W �
Z

(a) (b)

(c) (d) (e) (f)

(g) (h)

Figure 9: One loop contributions to matrix elements of Oi, for charged WIMP annihilation. The
wavy lines are photons, and the jagged lines are W±, except when explicitly labeled as a Z0.

7.3 Collinear Anomaly

In evaluating the amplitudes such as from diagrams (c) in Fig. 8 and 9, care must be taken to sub-

tract a nonvanishing soft region contribution from the collinear momentum integral. This nontrivial

subtraction is a remnant of nonfactorization between the collinear sectors [87], and manifests itself as

residual dependence of the low-energy matrix elements (86), (87) on log M/µ, appearing at leading

power in mW /M . For problems involving a single IR scale, this residual dependence can be factorized

to all orders in perturbation theory. [88–93] In the present case, we take

ci(µ) ! ci(µ)

✓

4M2

µ2

◆� 1
2F (mW ,µ)

, (88)

36

d

d logµ
log

2 µ2

M2
= 4 log

µ

M

determined by cusp structure



34

Next-to-leading log, versus leading-log resummation:

contribution from the collinear anomaly.

The resummed results capture the large ↵ log2 2M
mW

contribution through scale evolution of the

hard matching coe�cients ci(µ), which enter quadratically in (90). The fixed order result, on the

other hand, has the large ↵ log2 2M
mW

contribution but appearing only linearly in w±. For M & 7 TeV

the missing contributions result in w± becoming positive (�M2 w±/⇡↵2 becoming negative) which

translates to a negative �v in Figure 11 above. The resummation of large logarithms is necessary for

theoretical control of perturbative corrections.

� � � � ��-���

���

���

���

���

���

M
⇥

TeV
⇤

�
M

2

⇡
↵
2
w

±

Figure 12: The LL (purple) and NLL (gray) results for �M2 w±/⇡↵2 with estimated error bands
combined from varying mW < µL < 2mW and M < µH < 4M . For comparison, we also include the
fixed O(↵3) result (dashed green line), and the LL resummed result (red band) employed for �v in
Figure 10 above.

9 Summary

We have constructed a general e↵ective field theory framework to analyze heavy WIMP annihilation.

The factorization accomplished in (90) provides a systematically improvable framework in which

to compute annihilation observables. By separating the WIMP, M , and electroweak, mW , scales,

the EFT allows hard scale matching conditions to be e�ciently computed in the electroweak sym-

metric theory, while low-scale matching conditions and long-distance wavefunction analysis may be

performed in simpler e↵ective theories.

At the same time, large logarithms that would otherwise lead to a breakdown in perturbation

40

LL

NLL

treefree particle 
photon 

annihilation cross 
section
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8 Implications

Having completed the high scale matching (71), RG running (79) and finally low scale matching (90),

we may proceed to use the Hamiltonian to compute interesting physical observables and investigate

the impact of perturbative corrections.

� � � � ��

��-��

��-��

��-��

��-��

��-��

��-��

��-��

M
⇥

TeV
⇤

�
v
⇥

cm
3
/s
⇤

Figure 10: Sommerfeld enhanced WIMP annihilation cross sections for � � ! � � employing three
approximations. The fixed O(↵2) result is shown in dotted blue. The fixed O(↵3) result, including
the first non-vanishing O(↵4) contribution to w

00

, is shown in dashed green. The LL resummed
result, including one-loop matching coe�cients at the high and weak scales and resummation of the
collinear anomaly contribution, is shown in solid red.

Figure 10 shows the Sommerfeld enhanced annihilation cross section to line photons for three

approximations, taking � = 0.17 GeV and v = 10�3 as above. The blue dotted and green dashed

lines are fixed order results at O(↵2) and O(↵3), respectively, with the latter also including the first

non-vanishing O(↵4) contribution to w
00

. The red solid line is the result including LL resummation,

one-loop matching coe�cients at the high and weak scales, and resummation of the collinear anomaly

contribution. The uncertainty from scale variation would not be resolved on this log plot, hence we

only show the central value and discuss perturbative uncertainties below. As previously discussed

the fixed O(↵3) result (green dashed) becomes negative for M & 6 TeV, indicating a breakdown in

perturbation theory, while the resummed result does not lead to a negative cross section for the range

of masses plotted here.

There is a robust suppression of the resummed result due to the LL correction from the (universal)
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one loop
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resummed

Bauer, Cohen, Hill, Solon (2014)
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General framework in which to reliably compute annihilation 
signals for heavy WIMPs.  

see also: 
Baumgart, Rothstein, Vaidya 
(2014)
Ovanesyan, Slatyer, Stewart 
(2014)
Beneke, Hellman, Ruiz-
Femenia (2014)
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• QCD corrections are important to dark matter 
searches

• determine discovery potential (e.g. heavy pure 
states)
• determine compatibility of potential signals 
between experiments

• interplay with perturbative and nonperturbative QCD

• lattice matrix elements

• high-order decoupling relations

• novel nuclear responses
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• EFT developments
• matching and renormalization in HPET 

• Lorentz invariance in HPET

• high-order decoupling relations

• interplay of collinear anomaly and EWSB

• work to do:

• 1/M HWET

• 1/mc corrections to decoupling (lattice QCD)

• nuclear responses (identical at 1-body level)



38

extra slides



Additional states in the dark sector

singlet-doublet (e.g., bino-higgsino) 

interplay of mass-suppressed (tree level) and loop 
suppressed contributions
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FIG. 4: SI cross sections for low-velocity scattering on the
proton for the singlet-doublet and doublet-triplet admix-
tures, as a function of the mass splitting between pure-
state constituents, �/[(4⇡)2mW ] (in conveniently cho-
sen units such that interesting features of the curves with
di↵erent  may be displayed on the same scale). We in-
dicate pure case limits and label each curve with the 
value used. Inset plots use the same units.

presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading
order when |�| . mW , or more precisely |�| .
mW (4⇡)2. Within this regime, the purely spin-
0 contributions from tree-level Higgs exchange can
dominate (cf. [18]). However, when mW /� suppres-
sion is significant, loop-induced contributions become
relevant, and the opposite signs of spin-0 and spin-2
amplitudes lead to cancellations in the -� plane. In
the decoupling limit of SUSY,  depends on t� and
the sign of µ, taking values   tan ✓W /2 (  1/2)
for a bino-higgsino (wino-higgsino) mixture.

Extended gauge and Higgs sectors. A sim-
ple dimensional estimate of the pure-state cross sec-
tion yields �SI ⇠ (↵2mN/mW )4 ⇠ 10�45 cm2 [25].
However, destructive interference between spin-0 and
spin-2 amplitudes leads to anomalously small cross
sections. The degree of cancellation depends on SM
parameters such as mh in Fig. 2, and on the choice
of WIMP quantum numbers. Extending our compu-
tation to pure states of arbitrary isospin, J , and hy-
percharge, Y , the resulting cross section is minimum
for (J, Y ) = ( 12 ,

1
2 ) corresponding to the doublet, and
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I 12 , 12 M
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FIG. 5: SI cross sections for low-velocity scattering on
the proton as a function of ⌘ ⌘ t� cos(� � ↵), for pure
states with quantum numbers (J, Y ) indicated. The re-
gions |⌘|, |⌘ � 2| . 0.5 are phenomenologically allowed.
Cross sections assuming only a SM-like Higgs are at ⌘ = 0.

increases for larger J at fixed Y ; e.g., the result for

Y = 0 is �(J,0)
SI = [J(J + 1)/2]2�T

SI.

Additional structure in the Higgs sector may also
have impact. We illustrate this with a second CP-
even Higgs of mass mH > mh = 126GeV, aris-
ing in the context of the type-II two-Higgs-doublet
model. Upon including diagrams with both Higgses,
we obtain pure-state cross sections in terms of mH ,
t� ⌘ tan� and ⌘ ⌘ t� cos(� � ↵) (choosing vari-
ables suitable for parameterizing departures from the
“alignment limit” [15]). For t� � 1 and |⌘|  O(1),
the couplings of the SM-like Higgs to W±, Z0, u, c, t
are given by 1 + O(1/t2�), while those to d, s, b are

given by (1� ⌘) +O(1/t2�), measured relative to SM
values. Existing phenomenological constraints are
not sensitive to the sign of the latter, allowing for
values ⌘ ⇡ 0, 2 where the magnitude is near the SM
value. Figure 5 shows cross section predictions for
pure states with quantum numbers (J, Y ) indicated,
including (2, 0), the smallest representation for which
WIMP decay by dimension five operators is forbidden
by gauge invariance [16]. The results do not change
appreciably for mH & 500 and t� & 5 since the lead-
ing corrections are proportional to ⌘(1 � m2

h/m
2
H)

with subleading corrections of O(1/t2�).

Discussion. We constructed the EFT for heavy
WIMPs interacting with SM gauge and Higgs bosons,
and used it to compute predictions with minimal
model dependence for cross sections to be probed
in future DM search experiments. We presented
absolute predictions for WIMPs transforming un-
der irreducible representations of SU(2)W ⇥ U(1)Y
(Fig. 2), and considered the impact of additional
WIMPs (Fig. 4) and of an extended Higgs sector
(Fig. 5). We also demonstrated the significance of
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presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading
order when |�| . mW , or more precisely |�| .
mW (4⇡)2. Within this regime, the purely spin-
0 contributions from tree-level Higgs exchange can
dominate (cf. [18]). However, when mW /� suppres-
sion is significant, loop-induced contributions become
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Extended gauge and Higgs sectors. A sim-
ple dimensional estimate of the pure-state cross sec-
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However, destructive interference between spin-0 and
spin-2 amplitudes leads to anomalously small cross
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increases for larger J at fixed Y ; e.g., the result for

Y = 0 is �(J,0)
SI = [J(J + 1)/2]2�T

SI.

Additional structure in the Higgs sector may also
have impact. We illustrate this with a second CP-
even Higgs of mass mH > mh = 126GeV, aris-
ing in the context of the type-II two-Higgs-doublet
model. Upon including diagrams with both Higgses,
we obtain pure-state cross sections in terms of mH ,
t� ⌘ tan� and ⌘ ⌘ t� cos(� � ↵) (choosing vari-
ables suitable for parameterizing departures from the
“alignment limit” [15]). For t� � 1 and |⌘|  O(1),
the couplings of the SM-like Higgs to W±, Z0, u, c, t
are given by 1 + O(1/t2�), while those to d, s, b are

given by (1� ⌘) +O(1/t2�), measured relative to SM
values. Existing phenomenological constraints are
not sensitive to the sign of the latter, allowing for
values ⌘ ⇡ 0, 2 where the magnitude is near the SM
value. Figure 5 shows cross section predictions for
pure states with quantum numbers (J, Y ) indicated,
including (2, 0), the smallest representation for which
WIMP decay by dimension five operators is forbidden
by gauge invariance [16]. The results do not change
appreciably for mH & 500 and t� & 5 since the lead-
ing corrections are proportional to ⌘(1 � m2
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2
H)

with subleading corrections of O(1/t2�).

Discussion. We constructed the EFT for heavy
WIMPs interacting with SM gauge and Higgs bosons,
and used it to compute predictions with minimal
model dependence for cross sections to be probed
in future DM search experiments. We presented
absolute predictions for WIMPs transforming un-
der irreducible representations of SU(2)W ⇥ U(1)Y
(Fig. 2), and considered the impact of additional
WIMPs (Fig. 4) and of an extended Higgs sector
(Fig. 5). We also demonstrated the significance of

triplet-doublet (e.g., wino-higgsino) 

Δ: mass splitting of multiplets, in units where tree/
loop crossover occurs at ~1
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5.2 Nucleon e↵ective theory for light mediators

The forgoing analysis, with additional matching onto multinucleon operators, provides a general
framework for WIMP-nucleus scattering in the case where all new states in the dark sector have
mass � ⇤

QCD

, such that below this scale, a complete description is possible in terms of a systematic
expansion of operators in n

f

= 3 flavor QCD. Subsequent matching onto nucleon operators is given
simply by evaluating the necessary form factors, whose low-q2 behavior may be determined by lattice
QCD, chiral perturbation theory or other nonperturbative methods.

For completeness let us consider a more general situation allowing for light degrees of freedom,
with mass only assumed large compared to a typical WIMP-nucleon momentum transfer.15 We
assume that all new states of the dark sector are integrated out, and consider the resulting basis of
operators in the one-nucleon sector. Specializing to the choice vµ = uµ = (1, 0, 0, 0), and neglecting
electromagnetic interactions, the kinetic terms may be written,
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where N and � denote the nonrelativistic nucleon and WIMP fields, respectively. For interactions
even under P and T , we find through dimension eight the operators [34, 78],
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where the naming scheme for Wilson coe�cients is from Ref. [34]. (Note in particular that d
i

for
i = 7, 10 are absent in (79), since these operators are proportional to electromagnetic field strength.)
Lorentz symmetry is imposed by enforcing invariance under the infinitesimal boost ⌘ [31, 34]
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This implies the constraints,
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15We are here also assuming that the considered momentum transfers are small enough that pions may be integrated
out.
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For completeness let us consider a more general situation allowing for light degrees of freedom,
with mass only assumed large compared to a typical WIMP-nucleon momentum transfer.15 We
assume that all new states of the dark sector are integrated out, and consider the resulting basis of
operators in the one-nucleon sector. Specializing to the choice vµ = uµ = (1, 0, 0, 0), and neglecting
electromagnetic interactions, the kinetic terms may be written,
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where N and � denote the nonrelativistic nucleon and WIMP fields, respectively. For interactions
even under P and T , we find through dimension eight the operators [34, 78],
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where the naming scheme for Wilson coe�cients is from Ref. [34]. (Note in particular that d
i

for
i = 7, 10 are absent in (79), since these operators are proportional to electromagnetic field strength.)
Lorentz symmetry is imposed by enforcing invariance under the infinitesimal boost ⌘ [31, 34]
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This implies the constraints,
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15We are here also assuming that the considered momentum transfers are small enough that pions may be integrated
out.
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where r = m
�

/m
N

. With these constraints in place there are ten independent P and T conserving
four-fermion operators through dimension eight, including two operators at dimension six.

Operators even under T but odd under P are
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Relativistic invariance enforces the constraints
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leaving three independent operators. Operators odd under both P and T are
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Relativistic invariance enforces the constraints
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leaving three independent operators. Operators even under P and odd under T are
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Relativistic invariance enforces the constraints
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leaving four independent operators.

5.2.1 Lorentz versus Galilean invariance

We remark that the basis of operators in Eq. (79) under the constraints in (81) is Lorentz invariant.
If in place of the transformations in (80) we instead enforced Galilean symmetry [19], defined by

N ! eimN⌘·xN , � ! eim�⌘·x� , @
t
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� ⌘ · @ , @ ! @ , (88)
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2.3 Operator basis

Upon combining the SM building blocks in (1) with the DM building blocks in Table 1, and perform-
ing field redefinitions to eliminate redundant operators, we obtain the e↵ective lagrangian for DM
interactions below the weak scale.

For the relativistic scalar case we have the following interactions,
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For antisymmetric tensors we define the shorthand notation T̃µ⌫ = ✏µ⌫⇢�T
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/2 (we use the convention
✏0123 = +1). The ellipsis in (5) denotes operators of dimension six and higher involving the photon,
and operators of dimension seven and higher involving quarks and gluons. For a real scalar the
coe�cients c

�n

vanish for n = 3, 4.
For the relativistic fermion case we have the following interactions,
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. For a Majorana fermion the coe�cients
c
 n

with n = 1, 2, 5, 6, 11, 12, 13, 14, 15, 16 vanish, leaving ten types of operators through dimension
seven as considered in Ref. [15].

For the case of DM with mass M & m
W

, we have the following interactions,4
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2.3 Operator basis

Upon combining the SM building blocks in (1) with the DM building blocks in Table 1, and perform-
ing field redefinitions to eliminate redundant operators, we obtain the e↵ective lagrangian for DM
interactions below the weak scale.

For the relativistic scalar case we have the following interactions,
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✏0123 = +1). The ellipsis in (5) denotes operators of dimension six and higher involving the photon,
and operators of dimension seven and higher involving quarks and gluons. For a real scalar the
coe�cients c
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vanish for n = 3, 4.
For the relativistic fermion case we have the following interactions,
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. For a Majorana fermion the coe�cients
c
 n

with n = 1, 2, 5, 6, 11, 12, 13, 14, 15, 16 vanish, leaving ten types of operators through dimension
seven as considered in Ref. [15].
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2.3 Operator basis

Upon combining the SM building blocks in (1) with the DM building blocks in Table 1, and perform-
ing field redefinitions to eliminate redundant operators, we obtain the e↵ective lagrangian for DM
interactions below the weak scale.

For the relativistic scalar case we have the following interactions,
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For the relativistic fermion case we have the following interactions,

L
 ,SM

=
c
 1

m
W

 ̄�µ⌫ F
µ⌫

+
c
 2

m
W

 ̄�µ⌫ F̃
µ⌫

+
X

q=u,d,s,c,b

(

c
 3,q

m2

W

 ̄�µ�
5

 q̄�
µ

q +
c
 4,q

m2

W

 ̄�µ�
5

 q̄�
µ

�
5

q

+
c
 5,q

m2

W

 ̄�µ q̄�
µ

q +
c
 6,q

m2

W

 ̄�µ q̄�
µ

�
5

q +
c
 7,q

m3

W

 ̄ m
q

q̄q +
c
 8,q

m3

W

 ̄i�
5

 m
q

q̄q

+
c
 9,q

m3

W

 ̄ m
q

q̄i�
5

q +
c
 10,q

m3

W

 ̄i�
5

 m
q

q̄i�
5

q +
c
 11,q

m3

W

 ̄i@µ� q̄�µq

+
c
 12,q

m3

W

 ̄�
5

@µ� q̄�µq +
c
 13,q

m3

W

 ̄i@µ� q̄�µ�5q +
c
 14,q

m3

W

 ̄�
5

@µ� q̄�µ�5q

+
c
 15,q

m3

W

 ̄�
µ⌫

 m
q

q̄�µ⌫q +
c
 16,q

m3

W

✏
µ⌫⇢�

 ̄�µ⌫ m
q

q̄�⇢�q

)

+
c
 17

m3

W

 ̄ GA

↵�

GA↵�

+
c
 18

m3

W

 ̄i�
5

 GA

↵�

GA↵� +
c
 19

m3

W

 ̄ GA

↵�

G̃A↵� +
c
 20

m3

W

 ̄i�
5

 GA

↵�

G̃A↵� + . . . , (6)

where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. For a Majorana fermion the coe�cients
c
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with n = 1, 2, 5, 6, 11, 12, 13, 14, 15, 16 vanish, leaving ten types of operators through dimension
seven as considered in Ref. [15].
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. In each of (5), (6) and (7) we have
employed field redefinitions and chosen a basis of Hermitian QCD operators as in the following Sec-
tion 3.1.5 Lorentz-invariance constraints on the coe�cients in Eq. (7) may be derived by performing
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where the ellipsis denotes terms higher order in 1/M . Working through O(M�1) for photon operators
and O(M�3) for quark and gluon operators, we find that the variation of Eq. (7) under the boost
transformation vanishes upon enforcing the constraints
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where the subscript q on coe�cients of quark operators is suppressed. This leaves sixteen independent
quark operators (for each quark flavor) through dimension seven, which reduce, upon imposing
parity and time-reversal symmetry, to the seven operators describing nucleon-lepton interactions in
NRQED [34].

The basis for a heavy scalar is obtained by omitting in Eq. (7) operators containing the spin
structure �µ⌫

? . The basis for a self-conjugate heavy particle is obtained by imposing invariance under
Eq. (3) or Eq. (4); in particular we find that the coe�cients c
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. In each of (5), (6) and (7) we have
employed field redefinitions and chosen a basis of Hermitian QCD operators as in the following Sec-
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where the ellipsis denotes terms higher order in 1/M . Working through O(M�1) for photon operators
and O(M�3) for quark and gluon operators, we find that the variation of Eq. (7) under the boost
transformation vanishes upon enforcing the constraints
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where the subscript q on coe�cients of quark operators is suppressed. This leaves sixteen independent
quark operators (for each quark flavor) through dimension seven, which reduce, upon imposing
parity and time-reversal symmetry, to the seven operators describing nucleon-lepton interactions in
NRQED [34].

The basis for a heavy scalar is obtained by omitting in Eq. (7) operators containing the spin
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Eq. (3) or Eq. (4); in particular we find that the coe�cients c
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. In each of (5), (6) and (7) we have
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