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Introduction
• What is Higgsstrahlung? (a.k.a. Bjorken process)	


!

!

• What’s so special about Higgsstrahlung?	


1. The dominant channel of H production in e+e- 
collisions for      between 216 and ~400 GeV	


!

!
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2.3 Higgs at ILC: prospects9

2.3.1 Introduction

The success of the Standard Model (SM) is a success of
gauge principle. It is the success of the transverse compo-
nents of W and Z identified as gauge fields of the electroweak
(EW) gauge symmetry. Since explicit mass terms for W and
Z are forbidden by the gauge symmetry, it must be spon-
taneously broken by something condensed in the vacuum
which carries EW charges (I3 and Y denoting the third com-
ponent of the weak iso-spin and the hyper charge, respec-
tively),

h0 | I3,Y |0i 6= 0 while h0 | I3 +Y |0i= 0. (12)

We are hence living in a weak-charged vacuum. This some-
thing provides three longitudinal modes of W and Z:

Goldstone modes :c+,c�,c3 !W+

L ,W�
L ,ZL . (13)

It should be emphasized that we do not know the nature of
these longitudinal modes which stem from the something.
The gauge symmetry also forbids explicit mass terms for
matter fermions, since left- ( fL) and right-handed ( fR) mat-
ter fermions carry different EW charges, hence, as long as
the EW charges are conserved, they cannot mix. Their Yukawa
interactions with some weak-charged vacuum can compen-
sate the EW-charge difference and hence allow the fL- fR
mixing. In the SM, the same something is responsible for
the fL- fR mixing, thereby generating masses and inducing
flavor-mixings among generations. To form gauge-invariant
Yukawa interaction terms, we need a complex doublet scalar
field, which has four real components. In the SM, three of
them are identified with the three Goldstone modes and are
used to supply the longitudinal modes of W and Z. The re-
maining one is the physical Higgs boson. There is no rea-
son for this simplicity of the symmetry breaking sector of
the SM. The symmetry breaking sector (hear after called
the Higgs sector) can well be much more complicated. The
something could be composite instead of being elementary.
We know it’s there around us with a vacuum expectation
value of 246 GeV. But this was about all we knew concern-
ing the something until July 4th, 2012.

Since the July 4th, the world has changed! The discovery
of the 125 GeV boson (X(125)) at the LHC could be called
a quantum jump [134]. The observation of X(125)! gg de-
cay implies X is a neutral boson having a spin not equal to
1 (Landau-Yang theorem). We know that the 125 GeV bo-
son decays also to ZZ⇤ and WW ⇤, indicating the existence
9Keisuke Fujii
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of XVV couplings, where V = W/Z, gauge bosons. There
is, however, no gauge coupling like XVV . There are only
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Fig. 37 The origin of XVV coupling and its relation to the mass term
of V .

XXVV and XXV . The XVV coupling is hence most proba-
bly from XXVV with one X replaced by its vacuum expec-
tation value hXi 6= 0, namely hXiXVV . Then there must be
hXihXiVV , a mass term for V , meaning that X is at least
part of the origin of the masses of V =W/Z. This is a great
step forward to uncover the nature of the something in the
vacuum but we need to know whether hXi saturates the SM
vev of 245 GeV. The observation of the X ! ZZ⇤ decay
means that X can be produced via e+e� ! Z⇤ ! ZX , since
by attaching an e+e� pair to the Z⇤ leg and rotate the whole
diagram we can get the X-strahlung diagram as shown in
Fig.38. By the same token, X ! WW ⇤ means that X can
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Fig. 38 X ! ZZ⇤ decay and e+e� ! ZX process.

be produced via the WW -fusion process: e+e� ! nn̄X . So
we now know that the major Higgs production processes in
e+e� collisions are indeed available at the ILC, which can
be regarded as a no lose theorem for the ILC. The 125GeV
is the best place for the ILC, where variety of decay modes
are accessible. We need to check the 125GeV boson in de-
tail to see if it has indeed all the required properties of the
something in the vacuum.

The properties to measure are the mass, width, and JPC,
its gauge, Yukawa, and self couplings. The key is to con-
firm the mass-coupling relation. If the 125 GeV boson is the
one to give masses to all the SM particles, coupling should
be proportional to mass as shown in Fig.39. Any deviation
from the straight line signals physics beyond the Standard
Model (BSM). The Higgs serves therefor as a window to
BSM physics.

Our mission is the bottom-up model-independent recon-
struction of the electroweak symmetry breaking (EWSB)
sector through the coupling measurements. We need to de-
termine the multiplet structure of the Higgs sector by an-
swering questions like: Is there an additional singlet or dou-
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right-handed positrons), right-handed electrons will not
contribute to the process. This is also the case for one of
the most important Higgs production process at the ILC:
e+e� ! nen̄eH (WW -fusion single Higgs production). If
we have an 80% left-handed electron beam and a 30%
right-handed positron beam the Higgs production cross
section for this WW -fusion process will be enhanced by a
factor of 2.34 as compared to the unpolarized case. Beam
polarization hence plays an essential role.

Why 250 to 500 GeV?

The ILC is an e+e� collider designed primarily to cover the
energy range from

p
s = 250 to 500GeV. This is because

of the following three very well know thresholds. The first
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Fig. 41 Why 250-500 GeV? The three thresholds.

threshold is at around
p

s = 250GeV, where the e+e� ! Zh
process will reach its cross section maximum. This process
is a powerful tool to measure the Higgs mass, width, and
JPC. As we will see below, this process allows us to measure
the hZZ coupling in a completely model-independent man-
ner through the recoil mass measurement. This is a key to
perform model-independent extraction of branching ratios
for various decay modes such as h ! bb̄, cc̄, tt̄ , gg, WW ⇤,
ZZ⇤, gg , as well as invisible decays.

The second threshold is at around
p

s = 350GeV, which
is the well known tt̄ threshold. The threshold scan here pro-
vides a theoretically very clean measurement of the top quark
mass, which can be translated into mt(MS) to an accuracy
of 100MeV. The precise value of the top mass obtained this
way can be combined with the precision Higgs mass mea-
surement to test the stability of the SM vacuum [138]. The tt̄
threshold also enables us to indirectly access the top Yukawa
coupling through the Higgs exchange diagram. It is also
worth noting that with the gg collider option at this energy
the double Higgs production: gg ! hh is possible, which can
be used to study the Higgs self-coupling [139]. Notice also
that at

p
s = 350GeV and above, the WW -fusion Higgs pro-

duction process, e+e� ! nn̄h, becomes sizable with which
we can measure the hWW coupling and accurately deter-
mine the total width.

The third threshold is at around
p

s = 500GeV, where
the double Higgs-strahlung process, e+e� ! Zhh attains

its cross section maximum, which can be used to access
the Higgs self-coupling. At

p
s = 500GeV, another impor-

tant process, e+e� ! tt̄h, will also open, though the prod-
uct cross section is much smaller than its maximum that is
reached at around

p
s = 800GeV. Nevertheless, as we will

see, QCD threshold correction enhances the cross section
and allows us a reasonable measurement of the top Yukawa
coupling concurrently with the self-coupling measurement.

By covering
p

s= 250 to 500GeV, we will hence be able
complete the mass-coupling plot. This is why the first phase
of the ILC project is designed to cover the energy up to

p
s=

500GeV.

2.3.2 ILC at 250 GeV

The first threshold is at around
p

s = 250GeV, where the
e+e� ! Zh (Higgs-strahlung) process attains its cross sec-
tion maximum (see Fig.42).

Fig. 42 Cross sections for the three major Higgs production processes
as a function of center of mass energy.

The most important measurement at this energy is that of
the recoil mass for the process: e+e� ! Zh followed by Z !
`+`� (` = e,µ) decay. By virtue of the e+e� collider, we
know the initial state 4-momentum. We can hence calculate
the invariant mass of the system recoiling against the lepton
pair from the Z decay by just measuring the momenta of the
lepton pair:

M2
X = (pCM � (p`+ + p`�))

2 . (15)

The recoil mass distribution is shown in Fig. 43 for a mh =

125GeV Higgs boson with 250 fb�1 at
p

s = 250GeV. A
very clean Higgs peak is sticking out from small background.
Notice that with this recoil mass technique even invisible de-
cay is detectable since we do not need to look at the Higgs



2. “Recoil Mass” technique allows for cross section 
measurement independent of the Higgs decay 
channel (no need to observe the Higgs at all!)	


!

!

!

!

!

!
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could hold essential clues to this underlying theory.

The SM Higgs boson can be produced through several
channels in pp collisions at LHC, with gluon fusion pro-
viding by far the maximum rate for intermediate masses. In
e+e� collisions the central channels [59–63] are

Higgs-strahlung : e+e� ! Z +H (2)
W-boson fusion : e+e� ! n̄ene +H , (3)

with cross sections for a Higgs mass MH = 125 GeV as
shown in Tab.2 for the LC target energies of 250 GeV, 500
GeV, 1 TeV and 3 TeV. By observing the Z-boson in Higgs-

250 GeV 500 GeV 1 TeV 3 TeV

s [e+e� ! ZH] 318 95.5 22.3 2.37
s [e+e� ! n̄eneH] 36.6 163 425 862

Table 2 Cross sections in units of fb for Higgs-strahlung and W-boson
fusion of Higgs bosons in the SM for a set of typical ILC/CLIC ener-
gies with beam polarizations: P(e�,e+)= (�0.8,+0.3) for ILC at 250
and 500GeV, (�0.8,+0.2) for ILC at 1TeV, and (�0.8,0) for CLIC at
3TeV.

strahlung, cf. Fig.11, the properties of the Higgs boson in
the recoil state can be studied experimentally in a model-
independent way.

a) Higgs particle: mass and JCP

Already for quite some time, precision analyses of the elec-
troweak parameters, like the r-parameter, suggested an SM
Higgs mass of less than 161 GeV in the intermediate range
[17], above the lower LEP2 limit of 114.4 GeV [64] (for
a review see [65]). The mass of the new particle observed
close to 125 GeV at LHC, agrees nicely with this expecta-
tion.

The final accuracy for direct measurements of an SM
Higgs mass of 125 GeV is predicted at LHC/HL-LHC and
LC in the bands

LHC / HL-LHC : MH = 125±0.1/0.05 GeV (4)
LC : MH = 125±0.03 GeV . (5)

Extrapolating the Higgs self-coupling associated with
this mass value to the Planck scale, a value remarkably close
to zero emerges [66–68].

Various methods can be applied for confirming the JCP
=

0++ quantum numbers of the Higgs boson. While C = +

follows trivially from the H ! gg decay mode, correlations
among the particles in decay final states and between ini-
tial and final states, as well as threshold effects in Higgs-
strahlung [69], cf. Fig.12 (upper plot), can be exploited for
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measuring these quantum numbers.

b) Higgs couplings to SM particles

Since the interaction between SM particles x and the vac-
uum Higgs-field generates the fundamental SM masses, the
coupling between SM particles and the physical Higgs par-
ticle, defined dimensionless, is determined by their masses:

gHxx = [

p
2GF ]

1
2 Mx , (6)

the coefficient fixed in the SM by the vacuum field v =

[

p
2GF ]

�1
2 . This fundamental relation is a cornerstone of the

Higgs mechanism. It can be studied experimentally by mea-
suring production cross sections and decay branching ratios.

Figure credit: “Physics at the e+e- 	

Linear Collider”, 1504.01726 
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Figure credit: “Physics at the e+e- 	

Linear Collider”, 1504.01726 

Collider Shape	

Doesn’t Matter!!!

LHC cannot do this,	

no matter how 	


much data!!!



3. Clean events with low occupancy and no pile-up   
precision measurements are possible!	


!

!

!

!

!

Assuming statistical errors dominate cross-section 
measurement (     =250 GeV, no polarization):

3

ILC simulation
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Higgs EFT
• Use precision Higgsstrahlung measurement as a tool to 

search for new physics beyond the SM	


• Assume new physics appears only at scales       
(motivated by the LHC, although not required by it)	


• Effective Field Theory framework to parametrize effects 
of NP in a model-independent way:	


4

OWW = g2|H|2W a
µ⌫W

a,µ⌫

OBB = g02|H|2Bµ⌫B
µ⌫

OWB = gg0H†�aHW a
µ⌫B

µ⌫

OH = 1

2

(@µ|H|2)2
OT = 1

2

(H†$
DµH)2

O(3)`
L = (iH†�a

$
DµH)(L̄L�µ�aLL)

O(3)`
LL = (L̄L�µ�aLL)(L̄L�µ�aLL)

O`
L = (iH†$

DµH)(L̄L�µLL)

Oe
R = (iH†$

DµH)(ēR�µeR)

Table 1: A complete set of CP-conserving dimension-6 operators which contribute to e+e� !
hZ.

3 E↵ective Field Theory Approach

The e↵ects of any new physics appearing at a mass scale ⇤ on the Higgsstrahlung cross section

can be described in terms of an E↵ective Field Theory (EFT), as long as ⇤ is large compared

to the center-of-mass energy
p

s and the weak scale v. In general, the EFT Lagrangian is an

expansion in inverse powers of ⇤. The term of order ⇤�n contains all possible operators of

mass dimension 4+n compatible with the symmetries imposed on the theory, in our case the

full SM gauge symmetry as well as lepton and baryon number. With these restrictions, the

leading term in the expansion is n = 2, containing dimension-6 operators.

A complete set of CP-conserving dimension-6 operators that can contribute to the e+e� !
hZ process is listed in Table 1. This basis is complete in the sense that an arbitrary set of

CP-conserving dimension-6 operators contributing to the e+e� ! hZ process can be reduced

to the operators listed in Table 1 (plus additional operators irrelevant to e+e� ! hZ) by field

redefinitions. In principle there can be additional contributions from the dipole-type opera-

tors Oe
DB ⇠ L̄L�µ⌫eRHBµ⌫ , Oe

DW ⇠ L̄L�µ⌫eR�aHW a
µ⌫ . However, these are expected to be

Yukawa-suppressed due to the chirality flip; moreover, since they do not interfere with the

SM amplitude, their leading contribution is of order 1/⇤4. We therefore do not include them

in this analysis. This completes the enumeration of CP-conserving dimension-6 operators

contributing to e+e� ! hZ.

The dimension-6 Lagrangian has the form

L
pre�EWSB

=
X

i

ci
⇤2

Oi , (3.1)

where ci are dimensionless Wilson coe�cients. Given a complete theory at the scale ⇤, the

Wilson coe�cients can be computed in terms of the parameters of that theory; we will consider

an example of this in Section 4.1. In this section, we treat ci’s as free parameters.

– 5 –

An irreducible basis for 	

the 9 CP-conserving d=6 ops	


Other bases possible



• We calculate shifts in                    due to these 9 ops	


• Previous work (partial operator sets and/or incomplete 
calculations, except #12):	


1. Hagiwara, Strong, ’93	


2. Gounaris, Renard, Vlachos, ’95	


3. Killian, Kramer, Zerwas, ’96	


4. Gonzales-Garcia, ’99	


5. Hagiwara, Ishihara, Kamoshita, Kniehl, ’00	


6. Barger, Han, Langacker, McElrath, Zerwas, ’03	


7. Biswal, Godbole, Singh, Choudhury, ’05	


8. Kile, Ramsey-Musolf, ’07	


9. Dutta, Hagiwara, Matsumoto, ’08	


10. Contino, Grojean, Pappadopulo, Rattazzi, Thamm, ’13	


11. Amar, Banerjee, von Buddenbrock, et.al., ’14	


12.Beneke, Boito, Wang, ‘14
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Calculation
• Post-EWSB Effective Lagrangian:	


!

!

!

!

• “Direct” Effects: correction to ZZh vertex + 2 new 
vertices	


6

To account for electroweak symmetry breaking, we write the Higgs doublet as H =⇣
0, v+hp

2

⌘T
, where v ⇡ 246 GeV is the Higgs vev, while h is the physical Higgs boson field.

Note that in the presence of new physics, the field h defined in this way is not canonically

normalized; to return to canonical normalization requires a field redefinition

h!
⇣
1 +

cH
2⇤2

v2
⌘

h. (3.2)

Performing this field redefinition and dropping the terms that do not contribute to e+e� !
hZ, the dim.-6 Lagrangian of Eq. (3.1) reduces to

L
post�EWSB

=
d
1

v3

2⇤2

hZµZµ +
d
2

v

4⇤2

hZµ⌫Zµ⌫ +
d
3

v

2⇤2

hFµ⌫Zµ⌫

+
v

⇤2

 ̄�µ (d
4

PL + d
5

PR) Zµh, (3.3)

where Zµ is the SM Z boson field, Zµ⌫ = @µZ⌫ � @⌫Zµ, Fµ⌫ is the electromagnetic field

strength tensor,  is the (Dirac) electron field, and PR = 1

2

(1 + �
5

) and PL = 1

2

(1 � �
5

) are

helicity projectors. The Feynman rules derived from this Lagrangian are
Zµ

&k1

Z⌫

%
k
2

h
 kh

= ig
ZZh

gµ⌫ +
iv

⇤2

h
gµ⌫

�
v2d

1

� (k
1

· k
2

)d
2

�
+ k⌫

1

kµ
2

d
2

(3.4)

Zµ

&k1

�⌫
%
k
2

h
 kh =

ivd
3

⇤2

h
�(k

1

· k
2

)gµ⌫ + k⌫
1

kµ
2

i
(3.5)

e+

e� h

Zµ

=
iv

⇤2

�µ (d
4

PL + d
5
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• “Direct” cross section shift: 	


!

!

!

!

• Subtlety: need to carefully define “reference” SM cross 
section	


!

!

• At 0.1% precision, corrections to input parameters       
(             ) need to be included

7

F
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(g2L + g2R)v2
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m2
Z
�m2
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(s�m2
Z)
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F
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(g2L + g2R)
s(s+m2

Z�m2
h)

(s�m2
Z)

2

F
3

�e(gL + gR)
s+m2

Z�m2
h

s�m2
Z

F
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Z
�m2
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Z

F
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gR
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Z
�m2

h
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Table 2: Direct contributions to the e+e� ! hZ di↵erential cross section from each operator

in the post-EWSB Lagrangian.

��/� = 0.5%, and an “optimistic” one, ��/� = 0.1%. (If statistical error dominates, the

conservative scenario corresponds to an integrated luminosity
R

Ldt ⇡ 180 fb�1, or about 3

years of running the ILC-250 at design luminosity. The optimistic scenario corresponds toR
Ldt ⇡ 4500 fb�1, which would probably require combining data from multiple detectors

as envisioned, for example, in the TLEP proposal.) Table 3 and Fig. 1 show the exclusion

and discovery reaches in a new physics scenario where a single dim.-6 operator dominates.

For this estimate, we only used the total cross section measurement, and assumed that it is

in exact agreement with the reference value computed in the (mZ , GF , ↵) basis. Of course,

this information can be augmented with angular distributions, asymmetries, etc., further

improving the reach. We defer a consideration of such improvements to future work.

In addition to running at
p

s = 250 GeV, the physics program of the Higgs factory

may include running at higher energies as well; for example, in the case of the ILC, running

scenarios including periods of running at 350 GeV and 500 GeV are being discussed. While

a detailed analysis of the physics reach of such scenarios is beyond the scope of this paper, to

facilitate future work we present the analogues of Eq. (3.10) at these energies:

p
s = 350 GeV :

��

�
⇡

⇣
0.36cWW + 0.01cBB + 0.06cWB � 0.06cH � 0.04cT + 2.01c

(3)`
L

+0.28c
(3)`
LL + 1.73c`L � 1.48ceR

⌘
⇤�2

TeV

,

p
s = 500 GeV :

��

�
⇡

⇣
0.45cWW + 0.02cBB + 0.08cWB � 0.06cH � 0.04cT + 3.82c

(3)`
L

+0.28c
(3)`
LL + 4.10c`L � 3.02ceR

⌘
⇤�2

TeV

. (3.11)

As expected, the contributions of most operators grow with energy, and better reach can be

obtained if an equivalent sample of Higgs bosons is collected at higher energies.

It is instructive to compare the sensitivity of the measurement discussed here with the

current bounds on these operators, which come primarily from precision electroweak fits

and the LHC measurements of the Higgs rates. The final two columns of Table 3 list the

precision electroweak constraints, obtained from Ref. [37], and the bounds derived from the
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• Need 3 measurements to fix the 3 Lagrangian 
parameters in the electroweak sector	


• We considered two input “basis” choices:	


!

• In each basis, use SM relations to define the “reference” 
values of the couplings that enter                    : 	


!

!

!

!

8

2 e+e� ! hZ in the Standard Model

To define notation and set the stage for subsequent discussion, let us briefly review the well-

known results for the Higgsstrahlung process in the Standard Model (SM). The di↵erential

cross section is given by
d�

SM

d cos ✓
=

pZ
16⇡s3/2

F
SM

(s, t), (2.1)

where ✓ is the angle between the electron beam and the Z momentum and

pZ =

p
s

2

✓
1 � (mh + mZ)2

s

◆
1/2✓

1 � (mh � mZ)2

s

◆
1/2

(2.2)

is the Z boson momentum in the center-of-mass frame of the collision. Assuming unpolarized

beams, a tree level calculation yields [25–28]

F
SM

(s, t) =
1

4
g2
ZZh

(g2L + g2R)
2s + tu

m2
Z
� m2

h

(s � m2

Z)2
, (2.3)

where gL and gR are the couplings of the left-handed and right-handed electrons to the Z

boson. Here we used the standard Mandelstam variables:

s = (p
1

+ p
2

)2, t = (p
1

� p
4

)2 = m2

Z �p
s(EZ � pZ cos ✓),

u = (p
1

� p
3

)2 = m2

Z �p
s(EZ + pZ cos ✓) = m2

Z + m2

h � s � t, (2.4)

where

EZ =
s + m2

Z � m2

h

2
p

s
(2.5)

is the Z energy in the c-o-m frame. For reference, the numerical value of the tree-level SM

cross section at
p

s = 250 GeV is 224 fb.

In the context of our study, the coupling constants appearing in Eq. (2.3) deserve a

careful discussion. Potential precision of the e+e� ! hZ cross section measurement at the

Higgs factories, of order 0.1%, matches or surpasses that achieved in precision electroweak

(PEW) experiments at the Z pole. A comparison of the SM with experiment at this level

requires that all numerical inputs into the SM prediction be known to at least the same

precision. The standard approach, well-known in the case of PEW analyses, is to use three

most precisely measured electroweak-sector observables as inputs, infer the “reference” values

of the SM Lagrangian parameters from these inputs, and compute the numerical values of all

other observables using these reference values. We will adopt the same approach. Specifically,

we will consider two sets of inputs, or “bases”. In the first basis, we take the Z mass, the

fine-structure constant ↵ at zero momentum transfer, and the Fermi constant GF inferred

from muon decay rate, as inputs. In the second basis, we use the W mass instead of the

Fermi constant.2 The reference values of the relevant couplings are given by

ĝ
ZZh

= ĝzmZ , ĝL = ĝz

✓
�1

2
+ sin2 ✓̂W

◆
, ĝR = ĝz sin2 ✓̂W , (2.6)

2While GF has been measured to a much higher precision than mW , the second basis will be important for

a comparison of the full one-loop and e↵ective field theory calculations in Section 4.1.
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where

ĝz =
4
p

⇡↵

sin 2✓̂W
(2.7)

and the reference value of the Weinberg angle depends on the basis:

(mZ , GF , ↵) : sin 2✓̂W =

 
4⇡↵p

2GFm2

Z

!
1/2

,

(mZ , mW , ↵) : cos ✓̂W =
mW

mZ
. (2.8)

If the SM is the true theory, the numerical value of the SM cross section obtained with these

two input bases, or indeed any other basis, are identical within the experimental errors on

the inputs. However, if there is new physics, it may a↵ect the observables used to define the

reference couplings. In this case, the true values of the couplings gi in the SM Lagrangian

di↵er from their reference values ĝi:

g
ZZh

= ĝ
ZZh

+ �g
ZZh

, gL = ĝL + �gL, gR = ĝR + �gR. (2.9)

To search for new physics in e+e� ! hZ, one would compare the experimentally measured

cross section �
exp

with the reference SM cross section �
SM

(ĝi). The apparent cross section

shift

�� ⌘ �
exp

� �
SM

(ĝi) (2.10)

should thus incorporate the e↵ect of coupling shifts �gi, as well as the direct contribution of

new physics to the e+e� ! hZ cross section. In the presence of new physics, the reference

SM cross section values obtained in di↵erent bases are no longer the same. Since �
exp

is

physically observable and therefore must be basis-independent, this leads to basis dependence

of the cross section shift ��. We will observe this dependence in our explicit calculations of

�� in the following section. It should be emphasized that bounds on new physics obtained

in di↵erent bases must be identical, as long as a global fit to all available observables is

performed in each case and the uncertainties in the input observables are properly taken into

account.

Next-to-Leading-Order (NLO) corrections to the Higgsstrahlung cross section in the SM

are well-known [29–31]. For a Higgs mass of 125 GeV and CM energy
p

s = 250 GeV the

full NLO electroweak corrections amount to a 3% shift in the Higgstrahlung cross section

relative to the LO result. While small, such corrections are within the realm of proposed

future colliders. NNLO electroweak and mixed QCD-electroweak corrections have not yet

been calculated, although they are likely to constitute the dominant source of theoretical

uncertainty. In this paper, we will assume that a su�ciently precise SM prediction will be

available to bring the theory uncertainty to a level subdominant to the statistical error in the

cross section measurement.
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in di↵erent bases must be identical, as long as a global fit to all available observables is

performed in each case and the uncertainties in the input observables are properly taken into

account.

Next-to-Leading-Order (NLO) corrections to the Higgsstrahlung cross section in the SM

are well-known [29–31]. For a Higgs mass of 125 GeV and CM energy
p

s = 250 GeV the

full NLO electroweak corrections amount to a 3% shift in the Higgstrahlung cross section

relative to the LO result. While small, such corrections are within the realm of proposed

future colliders. NNLO electroweak and mixed QCD-electroweak corrections have not yet

been calculated, although they are likely to constitute the dominant source of theoretical

uncertainty. In this paper, we will assume that a su�ciently precise SM prediction will be

available to bring the theory uncertainty to a level subdominant to the statistical error in the

cross section measurement.
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• Numerical “SM prediction” is obtained by plugging 
reference coupling values into the SM cross section 
formula  	


• However, new physics modifies relation between input 
observables and SM Lagrangian couplings	


!

• This results in a shift between the true and “reference” 
values of the SM cross section	


• The observed “deviation from SM” is actually deviation 
from the reference SM value:               	


!

!
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where we used the shorthand notation c✓ ⌘ cos ✓W , s✓ ⌘ sin ✓W , and the coupling gz defined

in Eq. (2.7).3 Our expressions for the di are in excellent agreement with EFT results for

comparable bases in the existing literature (e.g. [32–36]).

In addition, upon electroweak symmetry breaking, the dim.-6 operators in (3.1) induce

shifts between the coupling constants in the SM Lagrangian and their reference values, as

explained in Section 2. In the two bases of interest, we obtain:4
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�
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LL
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ZZh
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1 � c2✓
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�
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The e+e� ! hZ cross section shift with respect to the reference SM cross section, as defined

in Eq. (2.10), is given by

d��

d cos ✓
=

pZ
16⇡s3/2

"
2

✓
�g

ZZh

g
ZZh

+
gL�gL + gR�gR

g2L + g2R

◆
F
SM

(s, t) +
g
ZZh

v

2⇤2

5X

i=1

diFi(s, t)

#
, (3.9)

where the functions Fi are collected in Table 2. The first term in the square brackets reflects

the e↵ect of the coupling constant shifts, while the second term is the “direct” contribution

of new interactions, Eq. (3.3), to this cross section. The direct contribution is due to the

interference between the SM diagrams and those with a single di insertion.

The fractional deviation of the total cross section from its reference SM value, in the

(mZ , GF , ↵) basis and at
p

s = 250 GeV, is approximately given by

��

�
⇡

⇣
0.26cWW + 0.01cBB + 0.04cWB � 0.06cH � 0.04cT + 0.74c

(3)`
L

+0.28c
(3)`
LL + 1.03c`L � 0.76ceR

⌘
⇤�2

TeV

, (3.10)

where ⇤
TeV

⌘ ⇤/(1 TeV). To estimate the sensitivity of Higgs factories to new physics, we

consider two scenarios for the cross section measurement precision: a “conservative” one,

3Note that the di↵erence between the actual and reference values of gz, discussed in the previous section,

is irrelevant in these formulas. This di↵erence amounts to corrections of order ⇤�4 to physical observables,

i.e. of the same order as dim.-8 operators that we ignored.
4We are grateful to Michael Fedderke for pointing out an error in the first set of formulas in Eq. (3.8) in

the original version of this paper.
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• Coupling shifts depend on the input basis:	


!

!

!

!

!

•      depends on the choice of the input basis; so do 
bounds on operators from                    alone      	


• Basis dependence should disappear in a global fit (i.e. 
propagate errors on input observables, include as 
constraints observables used as input in other bases) 
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• We find (in                   basis, at                    ):	


!

!

• Sensitivity (2/5 sigma) with 1 operator at a time: 	


!

!

!
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��/� = 0.5% ��/� = 0.1% PEW LHC

OWW 5.1/3.2 11.5/7.5 - 2.5

OBB 1.0/0.64 2.2/1.4 - 2.5

OWB 2.1/1.3 4.6/2.9 0.3 2.5

OH 2.5/1.6 5.5/3.5 - -

OT 2.0/1.3 4.5/2.8 1.0 -

O(3)`
L 8.6/5.4 19/12 1.2 -

O(3)`
LL 5.3/3.4 12/7.5 4.3 -

O`
L 10.1/6.4 23/14 1.5 -

Oe
R 8.7/5.5 19/12 1.0 -

Table 3: Exclusion (95% c.l.)/discovery (5-sigma)

reach of a measurement of �(e+e� ! hZ) at
p

s = 250

GeV. The reach is in terms of ⇤/
p

ci, in TeV, for each

operator Oi. For comparison, current precision elec-

troweak bounds from Ref. [37] and LHC bounds from

h�� e↵ective coupling measurement [38] are also shown.
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Figure 1: Graphical representation of the

results in Table 3. The exclusion reach is

shown in orange and the discovery reach in

blue (paler colors for higher accuracy). Black

lines denote the current precision electroweak

and LHC bounds.

agreement of the CMS measurement of the e↵ective h�� vertex, � , with the SM [38]. (ATLAS

constraints on this vertex are very similar [39].) For most operators, the sensitivity of the

Higgs factory is well in excess of the current bounds, the only exceptions being OBB and, for

the conservative luminosity assumptions, OWB.

Another relevant question is how the Higgsstrahlung cross section will compare, in terms

of new physics sensitivity, to various other observables that can be measured at the Higgs

factory. The operators OBB, OWB and OWW will be constrained by a precise measurement

of � , to which they contribute as

�� =
1

2

��(h ! ��)

�(h ! ��)
⇡ �2.9(cWW + cBB � cWB)⇤�2

TeV

. (3.12)

We estimate that a measurement of � with 8% precision, roughly corresponding to the ILC-

500 projection of the Snowmass-2013 study [4], would have a 95% c.l. exclusion reach of

⇤/
p

ci  4.3 TeV for each of these operators. The same measurement with a 1.5% pre-

cision, projected for TLEP in the same study, would increase the reach to about 10 TeV.

– 9 –

��/� = 0.5% ��/� = 0.1% PEW LHC

OWW 5.1/3.2 11.5/7.5 - 2.5

OBB 1.0/0.64 2.2/1.4 - 2.5

OWB 2.1/1.3 4.6/2.9 0.3 2.5

OH 2.5/1.6 5.5/3.5 - -

OT 2.0/1.3 4.5/2.8 1.0 -

O(3)`
L 8.6/5.4 19/12 1.2 -

O(3)`
LL 5.3/3.4 12/7.5 4.3 -

O`
L 10.1/6.4 23/14 1.5 -

Oe
R 8.7/5.5 19/12 1.0 -

Table 3: Exclusion (95% c.l.)/discovery (5-sigma)

reach of a measurement of �(e+e� ! hZ) at
p

s = 250

GeV. The reach is in terms of ⇤/
p

ci, in TeV, for each

operator Oi. For comparison, current precision elec-

troweak bounds from Ref. [37] and LHC bounds from

h�� e↵ective coupling measurement [38] are also shown.

0 5 10 15 20 25
Lê ci HTeVL

OWW
OBB
OWB
OH

OT

OL
H3L l

OLLH3L l
OL

l

OR
e

Figure 1: Graphical representation of the

results in Table 3. The exclusion reach is

shown in orange and the discovery reach in

blue (paler colors for higher accuracy). Black

lines denote the current precision electroweak

and LHC bounds.

agreement of the CMS measurement of the e↵ective h�� vertex, � , with the SM [38]. (ATLAS

constraints on this vertex are very similar [39].) For most operators, the sensitivity of the

Higgs factory is well in excess of the current bounds, the only exceptions being OBB and, for

the conservative luminosity assumptions, OWB.

Another relevant question is how the Higgsstrahlung cross section will compare, in terms

of new physics sensitivity, to various other observables that can be measured at the Higgs

factory. The operators OBB, OWB and OWW will be constrained by a precise measurement

of � , to which they contribute as

�� =
1

2

��(h ! ��)

�(h ! ��)
⇡ �2.9(cWW + cBB � cWB)⇤�2

TeV

. (3.12)

We estimate that a measurement of � with 8% precision, roughly corresponding to the ILC-

500 projection of the Snowmass-2013 study [4], would have a 95% c.l. exclusion reach of

⇤/
p

ci  4.3 TeV for each of these operators. The same measurement with a 1.5% pre-

cision, projected for TLEP in the same study, would increase the reach to about 10 TeV.

– 9 –



Explicit NP Example
• Now, let’s compute the same     in an explicit BSM 

model - choose “natural SUSY” with 3rd-gen. squarks at 
the weak scale, everything else heavy	


!

!

!

• Compute full NLO correction, not assuming 	


!

12

This is comparable to the Higgsstrahlung sensitivities in the case of OWW , and significantly

exceeds the Higgsstrahlung reach for OBB and OWB. However, we emphasize that the rel-

ative size of dimension-6 operators depends on the details of new physics at the scale ⇤,

and the Higgsstrahlung cross section gives access to several operators not accessible to other

measurements.

4 Third-Generation Squarks: The NLO Calculation

In this section, we analyze the corrections to e+e� ! hZ due to loops of third-generation

squarks of supersymmetric (SUSY) models. There are two related reasons to focus on these

particular contributions. First, third-generation squarks are required to be relatively light,

below 1 TeV, to avoid the need for significant fine-tuning in the EWSB sector [40–44]. Most

other superpartners can be heavier without inducing fine-tuning. In fact, such a split spec-

trum, often referred to as “Natural SUSY”, is preferred in light of the strong LHC bounds

on gluinos and squarks of the first two generations. Second, even if some other superpartners

are below 1 TeV, the third-generation squark e↵ects in e+e� ! hZ are enhanced due to the

large value of the top Yukawa coupling.

We implemented the “Natural SUSY” model in the FeynArts package [45, 46] by in-

cluding the third generation left-handed doublet eQ
3

= ( eTL, eBL) and right-handed singlet eTR

fields within the SM model file. (The right-handed sbottom eBR does not have to be below 1

TeV to maintain naturalness, and we do not include it in the calculation.) The three input

parameters for the squark sector are the two soft masses emL, emR and the At trilinear soft

coupling. The D-term scalar potential is also included; however this does not introduce ad-

ditional free parameters as the couplings are determined through the electroweak couplings.

The Lagrangian is thus given by

L = LSM + LKin,˜t � em2

L| eQ3

|2 � em2

R| eTR|2 � At( eTRH · eQ
3

+ h.c.) (4.1)

��2

t |H|2(| eQ
3

|2 + | eTR|2) � g02

2

✓
2

3
| eTR|22 � 1

6
| eQ

3

|2 � 1

2
|H|2

◆
2

(4.2)

�g2

2

X

a

⇣
eQ†
3

· ⌧a · eQ
3

+ H† · ⌧a · H
⌘
2

, (4.3)

where ⌧a = �a/2 with �a the usual Pauli matrices. This Lagrangian can be obtained from

the MSSM by decoupling all superpartners other than eQ
3

and eTR, and taking the usual

decoupling limit in the Higgs sector, m2

Hd
! 1 and tan � ! 1. Note, however, that our

implementation treats the Higgs mass mh as a free parameter, while in the MSSM it is not.

This is motivated by the well-known tension between naturalness and the 125 GeV Higgs in

the MSSM. The tension is reduced in extended models with additional tree-level contributions

to mh, such as the NMSSM or models with non-decoupling D-terms. Our implementation

of mh ensures that our results are applicable in such models, in the limit when extra BSM

states are decoupled. It should also be noted that due to the absence of A-terms mixing eBL
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Figure 2: Feynman diagrams corresponding to e+e� ! hZ at a lepton collider. The Higgs

wavefunction correction diagram discussed in [51] is shown in (a), and all possible countert-

erm diagrams are shown in (d) with the understanding that in the calculation of one-loop

counterterms only the stop and left-handed bottom squarks are included. One-loop Z/�

wavefunction correction diagrams (b,e) and vertex correction (c,f) diagrams are also shown.

Diagrams involving left-handed bottom squarks are not shown, but also contribute.

with eBR the physical mass of eBL is very close to emL, and hence whenever emL . 120 GeV we

will assume that other bounds from direct searches are satisfied by additional mixings in the

sbottom sector which raise the physical mass of both sbottoms.

In order to renormalize the theory for the calculation of virtual corrections, a minimum

basis of three input parameters must be chosen, and then counterterms are defined for those

parameters and the SM field strengths. Due to the ease of implementation in the FeynArts,

FormCalc, and LoopTools suite of packages [45, 46] we opt for the complete on-mass-

shell renormalization scheme [47–50] and hence choose electroweak inputs of (MZ , MW , ↵EM )

following the prescription of [47].

The full set of counterterms includes the field strength counterterms, particle mass coun-

terterms (including the Higgs mass counterterm, which we consider to be independent unlike

in the MSSM), a counterterm for the EM coupling at low energies, and a counterterm for the

Higgs vev. All other counterterms are then defined through combinations of this set. Due to

their weak charges and couplings to the Higgs, the squarks enter into the counterterms for

the weak sector.

Some of the NLO diagrams contributing to e+e� ! hZ are shown in Fig. 2. It has been

analytically checked that the full NLO correction is finite and gauge invariant. As a further

check, setting stop couplings to gauge bosons to zero in our NLO calculation reproduces

the results of [51], where gauge-singlet scalars t̃
0

were considered.5 In the case of t̃
0

, the

e↵ect arises entirely from the quartic coupling �2

t |H|2|t̃
0

|2, which induces an irreducible phys-

5For proper comparison, At must be set to 0 in the stop case, since it has no counterpart in the case of t̃0;

– 11 –



EFT/Full-NLO Comparison
• In the limit             , stop-loop contribution to the 

cross section can be described in the EFT language	


• Henning, Lu, Murayama (HLM) computed the Wilson 
coefficients for our model, with             and any    	


• Operator basis used by HLM is slightly different from 
ours (and slightly redundant), easy to translate using 
e.o.m. and field redefinitions 	


• Our NLO calculation used on-mass-shell 
renormalization scheme (used in FeynArts/FormCalc/
LoopTools)	


• This corresponds to                      input basis - crucial 
to achieve agreement between EFT and NLO!
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EFT/Full-NLO Comparison
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Figure 4: Left: Fractional corrections to the Higgsstrahlung cross section as a function of

the physical mass em
1

of the lightest stop squark, for equal soft masses emL = emR and two

values of the A-term. NLO results are shown in solid black and EFT results in dashed red.

For comparison the conservative and optimistic estimates of the 2� reach of a Higgs factory

are shown in dashed blue. Right: The ratio of EFT to NLO results R = �EFT
� /�NLO

� � 1 for

the same parameters.

cWW ĉWW

cBB ĉBB

cWB ĉWB

cH ĉH � ĉR + 3

4

g2ĉ
2W � 3

2

g2ĉW
cT ĉT + 1

4

g02ĉ
2B � 1

2

g02ĉB

c
(3)`
L �1

4

g2ĉ
2W + 1

4

g2ĉW

c
(3)`
LL �1

8

g2ĉ
2W

c`L
1

4

g02ĉ
2B � 1

4

g02ĉB
ceR

1

2

g02ĉ
2B � 1

2

g02ĉB

Table 4: A dictionary to translate the Wilson coe�cients in Table II of Ref. [24], denoted

here by ĉi, into coe�cients ci of the operators in our basis.

in Ref. [24] is slightly di↵erent from the one we use, Table 1. Using equations of motion, we

obtain a dictionary to translate the results of [24] into our basis, shown in Table 4. The EFT

prediction for the e+e� ! hZ cross section is then obtained by inputting the ci coe�cients

into the formulas of Sec. 3. It is important to use the same input basis in the EFT and NLO

calculations; in our case, it is the basis (mZ , mW , ↵).

The EFT and NLO calculations are at the same order (one-loop) in the usual perturbation

theory in gauge and Yukawa couplings. The EFT result is in addition leading-order in the

expansion in inverse powers of emS , while the NLO result is exact in emS . Thus we expect the

discrepancy between the two to scale approximately as the ratio of emS and the other mass

scales in the calculation, such as mZ , mH , v, and
p

s. As the CM energy
p

s is the largest of

– 13 –

Perfect agreement in the                 limit provides a highly 	

non-trivial check on our EFT and NLO calculations as well 

as HLM matching calculation!



Sensitivity to Stops 
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Figure 5: Conservative (solid black) and optimistic (dashed black) estimates of the 2� reach

of a Higgs factory through precision Higgstrahlung measurement. Left: Equal soft masses

emL = emR, with physical masses plotted on each axes. Contours of constant A-term are also

shown in dotted blue, and regions with color-breaking vacua have been shaded out in pink. In

the yellow bands, the observed Higgs mass is realized within the MSSM. Right: NLO results

for unequal soft masses and vanishing A-term, with the physical left and right-handed stop

masses shown on the axes. It should be noted that in all regions of parameter space the

corrections to the Higgsstrahlung cross section are negative.

stop loops, and does not include contributions from other MSSM particles.) An observable

shift in the Higgsstrahlung cross section is predicted in parts of that region.

On the right-hand plot the di↵erence between the left- and right-handed squark contribu-

tions is illustrated. It is clear that the corrections due to left-handed stops exceed those from

right-handed stops. This is perhaps not surprising as the right-handed stops only couple to

the Higgs and hypercharge. In theories with small A-terms the estimated experimental reach

is ⇠ 225 (475) GeV for left-handed stops alone, and ⇠ 170 (250) GeV for right-handed stops.

An extensive program of direct searches for stops is currently underway at the LHC.

If R-parity is conserved and the stop-LSP mass splitting is large, m
˜t � m

LSP

� mt, the

current bounds on the stop mass are already about 700�750 GeV, well in excess of the Higgs

factory reach we found. However, direct searches depend crucially on the spectrum of the

SUSY particles, and on the stop decay channels. For example, in the R-parity conserving

case, for stop and LSP masses in the regions m
˜t � m

LSP

⇡ mt or m
˜t � m

LSP

⇡ mW , stops

below 200 GeV are allowed by direct searches. Additional constraints on light stops in this

region have recently been placed by high-precision measurements of the tt̄ cross section [53]

and tt̄ spin correlations [54]. The tt̄ cross section measurement excludes stops between mt <

m
˜t < 177 GeV assuming the decay t̃

1

! t�̃0

1

proceeds predominantly to right-handed top

quarks. Although this does provide a weak limit for light stops, it may be entirely eroded

by mixed branching ratios, three-body decays, or changes in the LSP identity. The tt̄ spin

– 15 –

Can probe stops up to 300-500 GeV, with optimistic 
luminosity assumptions. Not super-impressive. But  

completely independent of stop decays. 
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FIG. 1: Regions of stop parameter space allowed by the LHC
Higgs measurements (blue - 67% CL and green - 95% CL) vs.
the domain where the stop-catalyzed EWB can potentially
be viable (⇠ > 0) in pink. Mass of the light stop is fixed at
100 GeV. The unphysical region (no solution for ✓t) is shaded
in purple.

procedure of Ref. [59], and the expressions for the cou-
pling shifts from Ref. [50]. We also evaluated the con-
straints from EW precision measurements; however, we
find these to be consistently weaker that the Higgs fit
constraints. Furthermore, for each point in the scan, we
determined whether or not the EWPT is strongly 1st-
order, using the procedure outlined in the previous sec-
tion.

We find that the 1st-order phase transition requires a
very light stop, mt̃1

<⇠ 110 GeV, independent of the other
parameters. On the other hand, LEP-2 constraints imply
mt̃1

>⇠ 100 GeV, confining this parameter to a narrow
band. Within this band, the Higgs fit constraints on the
remaining parameters vary only slightly with mt̃1 . In the
plots below, we choosemt̃1 = 100 GeV as a representative
value, but the picture that emerges from these plots is
valid throughout the allowed range of mt̃1 . Likewise, we
fix tan� = 10 in the plots as a representative value. For
larger tan� values our results stay almost independent of
tan�, while for lower tan� the EWPT becomes weaker
while the Higgs constraints are largely una↵ected. Again,
the picture that emerges remains valid independent of
tan�.

The main results of our analysis are summarized in
Figs. 1, 2 and 3. The conclusion is clear: there is
no overlap between the parameter space regions allowed
by the Higgs fit, and those consistent with a 1st-order
EWPT within a perturbative calculation. Thus, the stop-
catalyzed EWB scenario is no longer viable. Perhaps
the clearest way to understand this result is provided by
Fig. 1. Not surprisingly, the region of parameter space

allowed by Higgs measurements is a band around the line
Xt ⇡ mt̃2 : this follows directly from Eq. (4) in the limit
mt̃1 ⌧ mt̃2 . The crucial observation is that along the
contours of constant EWPT strength ⇠, Xt also scales
linearly with mt̃2 . This is related to the fact that the ef-
fective coupling between the lightest stop and the Higgs
is given by

Leff = y2t

 
1� X2

t

m2
t̃2
�m2

t̃1

!
|H|2|t̃1|. (9)

The thermal potential is determined almost exclusively
by this e↵ective coupling, so that constant-⇠ contours
in the regime mt̃1 ⌧ mt̃2 correspond to a fixed ratio
Xt/mt̃2 . Crucially, a 1st-order transition is only possi-
ble when the e↵ective coupling is close to 1; specifically,
Xt/mt̃2

<⇠ 0.3 is required, as can be seen in Fig. 1. This
region does not overlap with the region Xt/mt̃2 ⇡ 1 al-
lowed by the Higgs fits, regardless of the value of mt̃2 .
Incidentally, this argument provides a clear understand-
ing of the results of Ref. [19] regarding the MSSM, where
mt̃2 ⇠ 100 TeV is required by the 125 GeV Higgs mass.
Another useful representation of the same results is

shown in Figs. 2 and 3, where the Xt parameter has been
traded for the stop mixing angle ✓t. These plots make it
clear for a 100 GeV light stop, the Higgs fits imply a tight
relationship between ✓t and mt̃2 , which unfortunately is
incompatible with the small-mixing regime required by
the stop-catalyzed EWB.
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FIG. 2: Constraints and regions with a 1st-order EWPT in
the (mt̃2

, ✓t) plane, for the light stop mass mt̃1
= 100 GeV.

The region allowed by Higgs fits at 95% CL is shaded in blue.
The blue line shows the contour of ⇠ = 0 and the red line
shows the contour of ⇠ = 0.5. The region between the black
contours is allowed at the 95% CL if a non-zero Higgs invisible
width is included (✏inv = 0.1 using the definitions of [59]).



Conclusions
• Precision Higgsstrahlung cross section measurement at 

e+e- Higgs factories will give a powerful tool to search 
for new physics	


• Presented a complete calculation of the d=6 HEFT 
correction 	


• Both direct and indirect (true vs. reference coupling) 
contributions need to be taken into account to 
compute deviation of cross section from the SM 	


• Once they are, excellent agreement between HEFT and 
full-NLO calculations in the               limit is seen in 
the case of stops
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