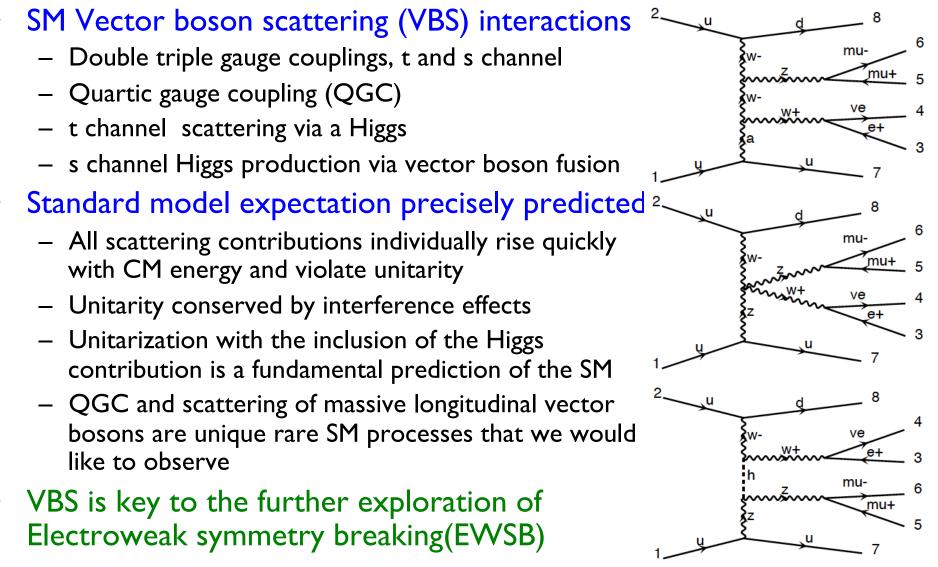
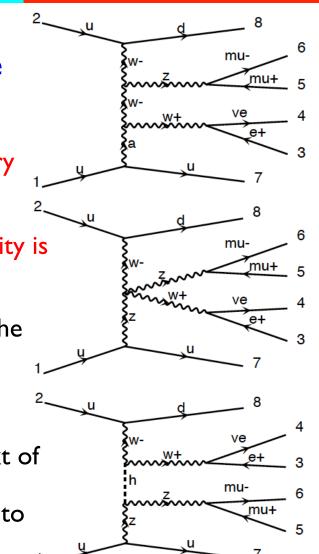
HEFT2015 Chicago New Physics in Vector Boson Scattering


Matt Herndon University of Wisconsin – Madison

Vector Boson Scattering



New Physics in VBS

- EWSB sector is the least explored part of the SM.
 - Has the most room for non SM physics
 - A direct window on non-SM electroweak symmetry breaking contributions
 - Example: Exchange of new heavy particles such as extra scalars (additional Higgs) changes how unitarity is preserved at high CM scattering energy
 - New physics would be evident at high energies in distributions dependent on the center of mass of the scattering system
 - Large m(VV) or the high tail of pT(V) distribution
- Effective field theory in VBS
 - New physics often described in generalized context of anomalous quartic gauge couplings (aQGC)
 - Can use an effective field theory aQGC formalism to study new physics

Effective Field Theory

- Effective field theory
 - Generally based on considering possible Lagrangian terms
 - SM can be represented by an effective field theory
 - All D4 (mass dimension) operators allowed by $SU(3)_C x SU(2)_L x U(1)$ symmetry
 - Operators constructed as products of the fields
 - For new physics add higher order operators that respect symmetries
 - Higher order operators suppressed by a new physics scale $1/\Lambda^{n-4}$
 - If due to a new particle Λ is order the mass of that particle
 - If Λ is large enough then the exact form of a possible propagator not so relevant
 - Due to constraints and direct searches we know that Λ is probably large
 - lowest order operators will have the largest impact
 - D6 is the lowest interesting order for gauge boson interactions
 - Automatically respects symmetries we expect
 - Can be extended to do NLO calculation

Example: Fermi Theory

- Effective field theory approach
 - Introduce a new operator for 4 fermion interaction.
 - Simplest operator at higher order, must be suppressed by a mass factor: c/Λ^2
 - Essentially representing a particle exchange
- Consider the propagator and couplings of the weak force

$$\frac{g^{2}}{8} \frac{1}{q^{2} - M_{W}^{2}} \rightarrow \frac{-g^{2}}{8} \frac{1}{M_{W}^{2}} \left(1 + \frac{q^{2}}{M_{W}^{2}}\right) \xrightarrow{q^{2} < M_{W}^{2}} - \frac{g^{2}}{8} \frac{1}{M_{W}^{2}}$$
$$\frac{c}{\Lambda^{2}} = \frac{G_{F}}{\sqrt{2}} = \frac{g^{2}}{8} \frac{1}{M_{W}^{2}}$$

- At low energies the weak interactions presents as a simple contact interaction with strength given by a coupling constant suppressed by a mass to the appropriate power
- Weak force fully explored by considering various operators with conserve or violate C and P

- Anomalous quartic gauge couplings in effective field theory
- aQGCs for SM allowed processes introduced at D6.
 - However they are the same operators that modify the (a)TGCs or Higgs gauge boson couplings which will be better measured
- Lowest independent aQGC interactions are D8 $\mathcal{O}_{\phi d} = \partial_{\mu} (\phi^{\dagger} \phi) \partial^{\mu} (\phi^{\dagger} \phi)$
 - Example: $\left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$
 - You insert D and Higgs VEV to get the quartic gauge terms

$$D_{\mu}\Phi = (\partial_{\mu} - igW^{j}_{\mu}\frac{\sigma^{j}}{2} - ig'B_{\mu}\frac{1}{2})\Phi$$

- All aQGCs that conserve charge are possible
- Note: Previous work in "nonlinear" realization of SU(2) _LxU(1) symmetry
 - Symmetries enforced without light Higgs
 - Lower dimension D4, D6 aQGCs

WWWW, WWZZ, ZZZZ,WWYY, WWZY, ZYYY, ZZYY, ZZZY

 $\mathcal{O}_{\phi W} = \left(\phi^{\dagger}\phi\right) \operatorname{Tr}[W^{\mu\nu}W_{\mu\nu}]$

 $\mathcal{O}_{\phi B} = \left(\phi^{\dagger}\phi\right)B^{\mu\nu}B_{\mu\nu}$

• Have to connect with that work. LEP, LHC limits already set in that approach Matthew Herndon, Wisconsin, HEFT 2015

a

For the record: All D8 aQGCs operators

Eboli's notation

• Operators

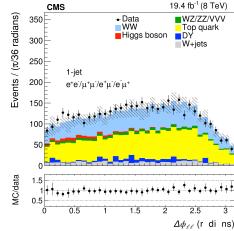
- Names based on vector boson polarizations
- T: transverse
- S: scalar, longitudinal
- M: mixed
- S operators only occur for massive vector boson scattering interactions
- These will be the most interesting

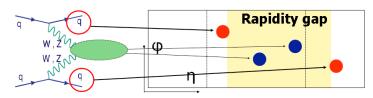
hep-ph/0606118 QGC at D8 O. Eboli et. Al.

$\mathcal{L}_{M,0}$	=	$\operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right]\times\left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\beta}\Phi\right]$
$\mathcal{L}_{M,1}$	=	$\operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta}\right]\times\left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right]$
$\mathcal{L}_{M,2}$	=	$[B_{\mu\nu}B^{\mu\nu}] \times \left[\left(D_{\beta}\Phi \right)^{\dagger} D^{\beta}\Phi \right]$
$\mathcal{L}_{M,3}$	=	$\left[B_{\mu\nu}B^{\nu\beta}\right]\times\left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right]$
$\mathcal{L}_{M,4}$	=	$\left[\left(D_{\mu}\Phi\right)^{\dagger}\hat{W}_{\beta\nu}D^{\mu}\Phi\right]\times B^{\beta\nu}$
$\mathcal{L}_{M,5}$	=	$\left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta \nu} D^{\nu} \Phi \right] \times B^{\beta \mu}$
$\mathcal{L}_{M,6}$	=	$\left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta \nu} \hat{W}^{\beta \nu} D^{\mu} \Phi \right]$
$\mathcal{L}_{M,7}$	=	$\left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$

$\mathcal{L}_{S,0}$	=	$\left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$
$\mathcal{L}_{S,1}$	=	$\left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$
$\mathcal{L}_{T,0}$	=	$\operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right]\times\operatorname{Tr}\left[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}\right]$
$\mathcal{L}_{T,1}$	=	$\mathrm{Tr}\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right]\times\mathrm{Tr}\left[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}\right]$
$\mathcal{L}_{T,2}$	=	$\mathrm{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right]\times\mathrm{Tr}\left[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}\right]$
$\mathcal{L}_{T,5}$	=	$\operatorname{Tr}\left[\hat{W}_{\mu u}\hat{W}^{\mu u} ight] imes B_{lphaeta}B^{lphaeta}$
$\mathcal{L}_{T,6}$	=	$\mathrm{Tr}\left[\hat{W}_{lpha u}\hat{W}^{\mueta} ight] imes B_{\mueta}B^{lpha u}$
$\mathcal{L}_{T,7}$	=	$\mathrm{Tr}\left[\hat{W}_{lpha\mu}\hat{W}^{\mueta} ight] imes B_{eta u}B^{ ulpha}$
$\mathcal{L}_{T,8}$	=	$B_{\mu u}B^{\mu u}B_{lphaeta}B^{lphaeta}$
$\mathcal{L}_{T,9}$		$B_{lpha\mu}B^{\mueta}B_{eta u}B^{ ulpha}$

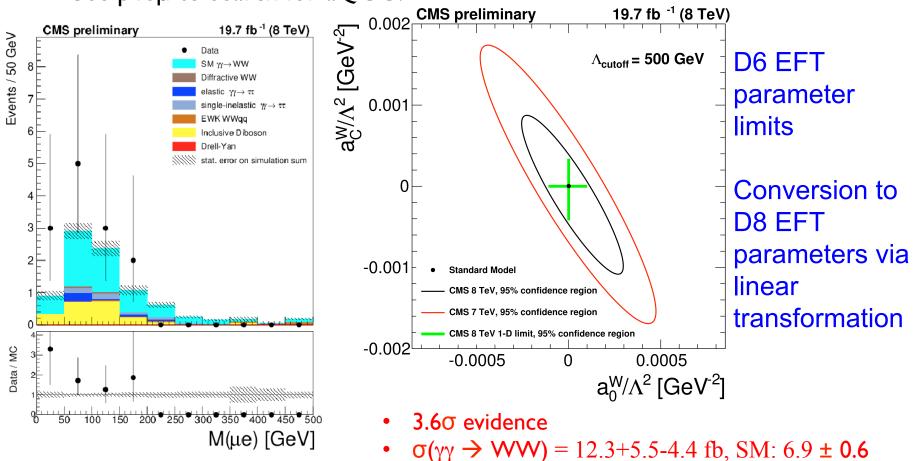
	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA
$\mathcal{L}_{S,0}, \mathcal{L}_{S,1}$	Х	Х	Х	О	О	0	Ο	О
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	Х	Х	Х	Х	Х	Х	Х	О
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	О	Х	Х	Х	Х	Х	Х	О
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	О	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	О	0	Х	О	О	Х	Х	Х


aQGC and VBS


- Example Searching for $VV \rightarrow WW$
 - Complex process with many contributions
 - Standard model WW+2jets
 - Central jets, WW mass falls quickly from threshold, includes large top contribution
 - Gluon fusion Higgs
 - Central jets, resonant WW mass, scalar angular distribution
 - Vector boson fusion Higgs
 - Forward tagging jets, resonant WW mass, scalar angular distribution
 - WW,ZZ scattering through t channel Z, γ ,W double WWZ, γ TGC to WW
 - Forward tagging jets, less central distribution, WW mass falls from threshold mass
 - WW,ZZ scattering through QGC or t channel Higgs exchange to WW
 - Forward tagging jets, central distribution, flatter WW mass distribution
 - aQGC
 - Sign of massive resonant particles or scattering. Gauge particles, 2nd Higgs, other scalar
 - Forward tagging jets, central distribution, larger contribution at high m(ll) or high pTl
 - Angular distributions of W decays and scattering jets also have discrimination

aQGC and VBS

- WW→WW Strategy
- LHC Run I
 - Measurement of WW cross section
 - With differential distributions including associated jets
 - VBF mode helped with discovery of Higgs boson
- LHC Run 2
 - Measure pure EWK WW production
 - Isolate VBS topology. WW and forward scattering jets large $\Delta\eta(jj)$ and m(jj)
 - Search for aQGCs
- LHC HL-LHC
 - Extract SM QGC coupling.
 - Proportional to fs0-fs1 operators combination
 - Isolate longitudinal component of vector boson scattering
 - W decay and jet angular distributions help.
 - Increased detector acceptance enhances sensitivity.
 - Search for aQGC
 - Use angular distributions and other scattering interactions to study and disentangle any non SM contributions



aQGC and VBS Possibilities

- LHC Run I:
 - VBS evidence in Wy, Zy, $\gamma\gamma \rightarrow$ WW, ssWW
 - aQGC limits in all VBS modes. Strongest in above modes
- LHC Run 2
 - VBS observation in Wy, Zy, ssWW: ~20-50fb⁻¹
 - VBS observation in WW, WZ ~100-200fb⁻¹
 - VBS observation in ZZ ~200-300fb⁻¹
 - Stronger aQGC limits 10x substantial energy enhancement
- LHC HL-LHC
 - Accurate SM QQC measurements
 - Stronger aQGC limits 2x
 - Evidence for longitudinal VBS, combines across modes or experiments

- $\gamma\gamma \rightarrow$ WW in Central exclusive production <u>CMS PAS FSQ-13-008</u>
 - Signal: dileptons (eµ) and missing E_T with central track veto
 - Use pTeµ to search for aQGC.

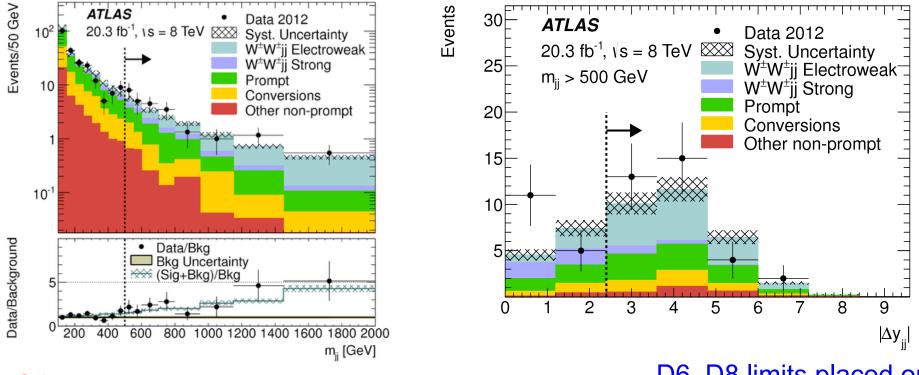
Matthew Herndon, Wisconsin, HEFT 2015

Evidence for EWK Z γ

- $Z\gamma \rightarrow II\gamma + 2$ jets CMS PAS SMP-14-018 EWK cross section measured in VBS phase space: $\Delta \eta$ (jj) and m(jj) using m(jj) fit 19.7 fb⁻¹ (8TeV) mu channel (8 TeV) Events/100.00 GeV Events / bin Data CMS CMS Preliminary Zγ + Jets Preliminary Fake Photon 10² um of other backgrounds Top EWK Zγ+2Jets AQGC signal, f_/Å = 5.1 TeV^{*} 🕅 Systematic Uncertainty ignal systematic uncertainty background systematic uncertainty 10 150 250 350 200 300 400 450 200 400 600 800 1000 1200 100 M (GeV) M_{ii} (GeV) D8 EFT limits put on fT
 - 3.0σ evidence
 - σ (EWK Z γ) = 1.86^{+0.89}_{-0.75}(*stat.*)^{+0.41}_{-0.27}(*sys.*) ± 0.05(*lumi.*) fb
 - $1.26 \pm 0.11(scale) \pm 0.05(PDF)$ SM:

Matthew Herndon, Wisconsin, HEFT 2015

500


and fM parameters

using $m(Z\gamma)$

Evidence for EWK ss WW

- EWK WW $\rightarrow |v|v + 2$ jets ATLAS Phys. Rev. Lett. 113, 141803 (2014)
- EWK cross section measured in VBS phase space: $\Delta \eta$ (jj) and m(jj)

- 3.6σ evidence
- $\sigma(\text{EWK ssWW}; \sigma^{\text{fid}} = 1.3 \pm 0.4(\text{stat}) \pm 0.2(\text{syst}) \text{ fb}$ SM:

 0.95 ± 0.06 fb

D6, D8 limits placed on aQGC EFT parameters by ATLAS and CMS

LHC Run I aQGC Limits

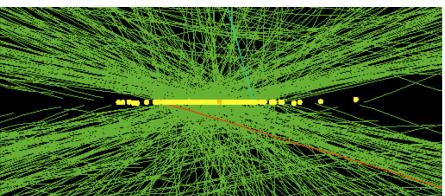
October 2015				c	
		Channel	Limits	∫ <i>L</i> dt	s
f _{T,0} /Λ ⁴	HH	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
ŀ		WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	⊢	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	łł	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,1}/\Lambda^4$	⊢−−− 1	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	H-H	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
f _{T,2} /Λ ⁴	⊢−−−−−	Zγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	++	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
f _{T,8} /Λ ⁴	н	Zγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
f _{T,9} /Λ ⁴	⊢	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
_11	0	aQ	50 GC Limits @95	% C.L.	100 [TeV⁻'

October 2015	CMS				
	ATLAS -	Channel	Limits	∫ <i>L</i> dt	s
$f_{M,0} / \Lambda^4$		WVγ	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹	8 TeV
	—	Ζγ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹	8 TeV
	H-H	ss WW	[-3.3e+01, 3.2e+01]	19.4 fb ⁻¹	8 TeV
	Н	γγ→WW	[-1.5e+01, 1.5e+01]	5.1 fb ⁻¹	7 TeV
	Н	γγ→WW	[-4.6e+00, 4.6e+00]	19.7 fb ⁻¹	8 TeV
$f_{M,1}/\Lambda^4$	······	WVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV
	—	Ζγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹	8 TeV
	11	ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
	J	$\gamma\gamma{\rightarrow}WW$	[-5.7e+01, 5.7e+01]	5.1 fb ⁻¹	7 TeV
	[··]	$\gamma\gamma{\rightarrow}WW$	[-1.7e+01, 1.7e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,2}/\Lambda^4$	I	Wγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹	8 TeV
	н	Ζγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV
f _{M,3} /Λ ⁴ I······		Wγγ	[-4.7e+02, 4.4e+02]	20.3 fb ⁻¹	8 TeV
	⊢ −−1	Ζγ	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,6} / \Lambda^4$	+4	ss WW	[-6.5e+01, 6.3e+01]	19.4 fb ⁻¹	8 TeV
f _{M,7} /Λ ⁴	I4	ss WW	[-7.0e+01, 6.6e+01]	19.4 fb ⁻¹	8 TeV
-500	0 500		1000 1 GC Limits @95	1500 % C.L.	[TeV-

- D8 limits placed on EFT aQGC parameters
 - Conversion performed from D6 parameters
- Issue: Unitarity violated at LHC energies for aQGC parameters this large
- Strategies: Form factors, k-Matrix unitarization, or ignore violation understanding that later analysis will have better sensitivity.

Are these limits interesting?

Naive interesting scale would be: $f/\Lambda^4 = 1$ NP: $\Lambda = 1$ TeV f = 1



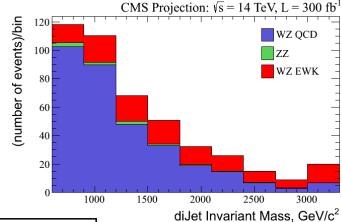
Run 2 and HL-LHC

- LHC Run 2
 - Energy: I3 TeV
 - Integrated Luminosity: 300fb⁻¹
 - Substantial improvement in sensitivity due to increased energy
- HL-LHC upgrade
 - Design energy: 14 TeV
 - High Luminosity: Order 140 pileup
 - Integrated Luminosity: 3ab⁻¹
- CMS Upgrade

(representative of either detector)

- New silicon tracker $|\eta| < 4$
- New forward calorimeter, increased granularity
- Extended muon coverage

Effective rejection of jets from pileup, improve background to VBS topology.

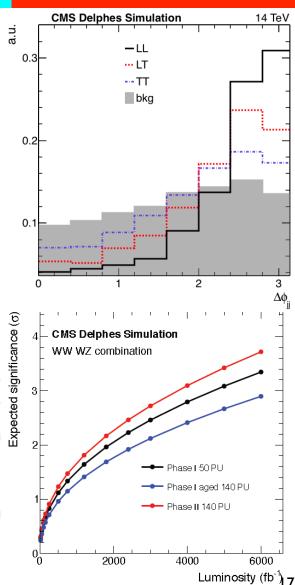

Extended angular coverage for leptons and jets, Improves ability to distinguish longitudinal polarization in VBS

Run 2 VBS

- Run 2 and HL-LHC physics studies ٠
 - Based on Delphes fast detector simulation
 - Performance parameterized from full simulation of upgraded detectors ____
 - Done by both CMS and ATLAS
- CMS Run 2 VBS results
- Accessed luminosity for

 3σ and 5σ sigma observation

WZ	Significance	3σ	5σ
m(jj)	SM Rate discovery	$110 {\rm fb}^{-1}$	260 fb ⁻¹


CMS PAS FTR-13-006

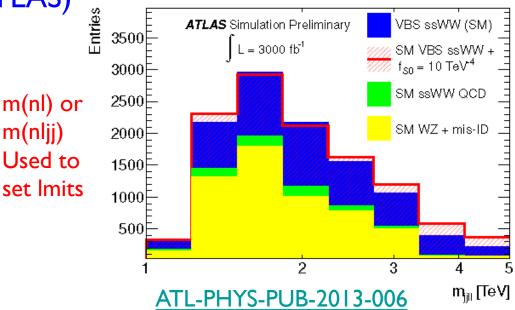
ssWW	Significance	3σ	5σ	CMS PAS SMP-14-008
M(II),R	SM Rate discovery	20 fb ⁻ 1	50 fb ⁻¹	In Physics TP

HL-LHC longitudinal VBS

- CMS HL-LHC physics studies
 - Compares various detector scenarios
 - Combined ss WW and WZ modes
- Accessed sensitivity as a function of luminosity for:
 - Detecting partial unitarization scenario
 - Significance for longitudinal vector boson scattering
 - aQGC for all relevant D8 EFT
 - parameters
- 2.5σ significance expected
- 2D fit to $\Delta \phi(jj)$, pTl
- Combining more modes or between experiments would enhance sensitivity

Matthew Herndon, Wisconsin, HEFT 2015

CMS PAS SMP-14-008


Run 2 & HL-LHC aQGC

m(nljj)

aQGC studies (CMS and ATLAS)

CMS PAS SMP-14-008

	phase I	phase II	phase I aged
S_0	1.06	1.07	1.17
\mathbf{S}_1	3.51	3.55	3.87
M_0	0.78	0.75	0.82
M_1	1.10	1.06	1.14
M_6	1.56	1.49	1.63
M_7	1.37	1.32	1.45
T_0	0.067	0.077	0.083
T_1	0.036	0.033	0.036
T_2	0.119	0.111	0.119

$300 \, {\rm fb}^{-1}$ $3000 \, {\rm fb}^{-1}$ dimension channel Parameter Λ_{UV} [TeV] 5σ 5σ 95% CL 95% CL 20 TeV^{-2} 9.3 TeV⁻² ZZ 34 TeV^{-2} 16 TeV^{-2} $c_{\phi W}/\Lambda^2$ 1.9 6 f_{S0}/Λ^4 0.8 TeV^{-4} $W^{\pm}W^{\pm}$ 10 TeV^{-4} $6.8 \, {\rm TeV^{-4}}$ 4.5 TeV^{-4} 2.08 f_{T1}/Λ^4 0.3 TeV^{-4} 1.3 TeV^{-4} $0.7 \, {\rm TeV^{-4}}$ 0.6 TeV^{-4} 8 WZ 3.7 f_{T8}/Λ^4 $0.2 \ { m TeV^{-4}}$ 0.9 TeV^{-4} $0.5 \, {\rm TeV^{-4}}$ 0.4 TeV^{-4} 8 12 $Z\gamma\gamma$ $0.9 \, {\rm TeV^{-4}}$ 0.7 TeV^{-4} 0.3 TeV^{-4} f_{T9}/Λ^4 8 2.0 TeV^{-4} Ζγγ 13

Achieve sensitivity to interesting aQGC effects for many operators Matthew Herndon, Wisconsin, HEFT 2015

• Vector boson scattering

- Primary component of massive vector boson scattering is scattering via a Higgs boson
- A central topic to understanding the role of the Higgs boson within the context of the SM

• New physics

- NP physics such as additional scalar particles, for instance more Higgs bosons, would substantial effect the scattering at high energy
- EWSB sector is the newest and least explored area of the SM
- Effective field theory
 - Allows generalized investigation of the possible effects of high energy scale NP on VBS
- LHC Run 2 and HL-LHC will start the exploration of these NP possibilities.

