# Global analysis of non-standard Higgs-boson couplings with HEPfit 

Laura Reina<br>Florida State University

Higgs Effective Field Theory Workshop 2015 (HEFT 2015) University of Chicago - November, 52015

With: J. de Blas ${ }^{1}$, M. Ciuchini ${ }^{2}$, E. Franco ${ }^{1}$, D. Ghosh ${ }^{3}$, S. Mishima ${ }^{4}$, M. Pierini ${ }^{5}$, L. Silvestrini ${ }^{1}$

1) University of Roma "La Sapienza", 2) University of Roma Tre, 3) Weizmann Institute of Science, 4) KEK, 5) CERN.

Thanks to the extended HEPfit collaboration.

## Outline

- Motivations and general framework
$\rightarrow$ LHC-Run I: found $M_{H} \simeq 125 \mathrm{GeV}$, new physics $\rightarrow \mathrm{TeV}$ range.
$\rightarrow$ LHC-Run II: higher statistics, higher precision, new mass thresholds.
$\rightarrow$ Explore indirect evidence of new physics from electroweak+Higgs fits while searching for direct evidence.
$\rightarrow$ Model-independent Higgs-boson studies: EFT approach.
- The HEPfit package: a global fit of existing electroweak precision data and Higgs-boson observables
$\rightarrow$ General structure of the package, main ingredients.
$\rightarrow$ Statistical analysis handled using a Bayesan approach (BAT).
$\rightarrow$ Structured to allow both a model-independent and a model-specific fit.
- Main results for Higgs-boson couplings and effective interactions
$\rightarrow$ In terms $\kappa_{i}$ rescaling factors.
$\rightarrow$ In terms of $C_{i}$ coefficients of EFT operators.
- Outlook and conclusions


## References

Results have been presented at several meetings, in particular:
$\rightarrow$ Lepton-Photon 2015: see plenary talk by M. Ciuchini
$\rightarrow$ SUSY 2015: see parallel talks by J. de Blas and P. Ayan (on HEPfit) and will soon appear in a paper together with the official release of HEPfit.

A first round of results were published in last year ICHEP 2014 proceedings:
$\rightarrow$ arXiv:1410.4204 and arXiv:1410.6940

Previous paper on EW fit based on SUSYfit:
$\rightarrow$ Ciuchini, Franco, Mishima, Silvestrini, arXiv:1306.4644

The HEPfit developer repository: https://github.com/silvest/HEPfit

## General Framework

EFT extension of the SM Lagrangian by $d>4$ operators,

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_{d}, \quad \text { with } \quad \mathcal{L}_{d}=\sum_{i} C_{i} \mathcal{O}_{i}, \quad\left[\mathcal{O}_{i}\right]=d
$$

We consider:
$\rightarrow d=6$ operators only, obeying SM gauge symmetry, L and B conservation
$\rightarrow$ one Higgs doublet of $S U(2)_{L}$, linearly realized SSB
$\rightarrow$ assuming flavor universality: 59 operators
[basis by Grzadkowski et al., JHEP 1010 (2010) 085]
$\rightarrow$ CP even and with at least one Higgs: 27 operators
$\rightarrow$ contributing to the observables considered: 17 operators
$\rightarrow$ with a specific model in mind: running $C_{i}(\Lambda) \rightarrow C_{i}\left(M_{E W}\right)$ more meaningful
$\rightarrow$ otherwise take $C_{i}=C_{i}\left(M_{E W}\right)$, no running included

$$
\begin{aligned}
& \mathcal{O}_{H G}=\left(H^{\dagger} H\right) G_{\mu \nu}^{A} G^{A \mu \nu} \\
& \mathcal{O}_{H W}=\left(H^{\dagger} H\right) W_{\mu \nu}^{I} W^{I \mu \nu} \\
& \mathcal{O}_{H B}=\left(H^{\dagger} H\right) B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{O}_{H W B}=\left(H^{\dagger} \tau^{I} H\right) W_{\mu \nu}^{I} B^{\mu \nu} \\
& \mathcal{O}_{H D}=\left(H^{\dagger} D^{\mu} H\right)^{*}\left(H^{\dagger} D_{\mu} H\right) \\
& \mathcal{O}_{H \square}=\left(H^{\dagger} H\right)^{*} \square\left(H^{\dagger} H\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}_{H L}^{(1)}=\left(H^{\dagger} i \overleftrightarrow{D}{ }_{\mu} H\right)\left(\bar{L} \gamma^{\mu} L\right) \\
& \mathcal{O}_{H L}^{(3)}=\left(H^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} H\right)\left(\bar{L} \tau^{I} \gamma^{\mu} L\right) \\
& \mathcal{O}_{H e}=\left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\
& \mathcal{O}_{H Q}^{(1)}=\left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q} \gamma^{\mu} Q\right) \\
& \mathcal{O}_{H Q}^{(3)}=\left(H^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} H\right)\left(\bar{Q} \tau^{I} \gamma^{\mu} Q\right) \\
& \mathcal{O}_{H u}=\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\
& \mathcal{O}_{H d}=\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\
& \mathcal{O}_{H u d}=i\left(\widetilde{H}^{\dagger} D_{\mu} H\right)\left(\bar{u}_{R} \gamma^{\mu} d_{R}\right)
\end{aligned}
$$

bosonic operators
$\longrightarrow$ corrections to:

- oblique parameters
- $h V V$
- $W W Z$ and $W W \gamma$
single-fermionic-vector-current operators
$\longrightarrow$ corrections to:
- $h f \bar{f}$
- Vf $\bar{f}$
single-fermionic-scalar-current

$$
\begin{aligned}
& \mathcal{O}_{e H}=\left(H^{\dagger} H\right)\left(\bar{L} e_{R} H\right) \\
& \mathcal{O}_{u H}=\left(H^{\dagger} H\right)\left(\bar{Q} u_{R} \widetilde{H}\right) \\
& \mathcal{O}_{d H}=\left(H^{\dagger} H\right)\left(\bar{Q} d_{R} H\right)
\end{aligned}
$$

operators
$\longrightarrow$ corrections to:

- oblique parameters
- Yukawa couplings
- $h f \bar{f}$
four-fermion operator

$$
\mathcal{O}_{L L}=\left(\bar{L} \gamma^{\mu} L\right)\left(\bar{L} \gamma^{\mu} L\right) \quad \longrightarrow \quad \text { corrections to: }
$$

- $G_{F}$ extraction from $\mu$ decay

Notice: $V f \bar{f}$ and indirect effects (e.g. $G_{F}$ ) strongly constrained by EW precision observables.

## Upon SSB, direct effect on Higgs-boson couplings

$$
\mathcal{L}_{\mathrm{Higgs}}=\mathcal{L}_{h V V}+\mathcal{L}_{h f f}+\mathcal{L}_{h V f f}+\mathcal{L}_{h T f f}
$$

each term contains the interactions to either vector bosons or fermions.
Ex.1: $\mathcal{L}_{h V V}$ contains all the non-fermionic interactions with the SM vector bosons,

$$
\begin{aligned}
\mathcal{L}_{h V V} & =h\left(g_{h Z Z}^{(1)} Z_{\mu \nu} Z^{\mu \nu}+g_{h Z Z}^{(2)} Z_{\nu} \partial_{\mu} Z^{\mu \nu}+g_{h Z Z}^{(3)} Z_{\mu} Z^{\mu}-\right. \\
& +g_{h A A} A_{\mu \nu} A^{\mu \nu}+g_{h Z A}^{(1)} Z_{\mu \nu} A^{\mu \nu}+g_{h Z A}^{(2)} Z_{\nu} \partial_{\mu} A^{\mu \nu}- \\
& +g_{h W W}^{(1)} W_{\mu \nu}^{+} W^{-\mu \nu}+\left(g_{h W W}^{(2)} W_{\nu}^{+} D_{\mu} W^{-\mu \nu}+\left(g_{h W W}^{(2)}\right)^{*} W_{\nu}^{-} D_{\mu} W^{+\mu \nu}\right) \\
& \left.+g_{h W W}^{(3)} W_{\mu}^{+} W^{-\mu}+g_{h G G} \operatorname{Tr}\left[G_{\mu \nu} G^{\mu \nu}\right]\right)
\end{aligned}
$$

where (both directly and indirectly $\rightarrow G_{F}$, field renormalization, ...),
$C_{H G} \longrightarrow g_{h G G}$
$C_{H W} \longrightarrow g_{h W W}^{(1)}$
$C_{H W}, C_{H B}, C_{H W B} \longrightarrow g_{h Z Z}^{(1)}, g_{h Z A}^{(1)}, g_{h A A}^{(1)}$
$C_{H D} \longrightarrow g_{h Z Z}^{(3)}$
while Ex. 2: $\mathcal{L}_{h f f}$ contains the interactions with the fermions only:

$$
\mathcal{L}_{h f f}=h \sum_{f} g_{h f f} \overline{f_{L}} f_{R}+\text { h.c. }
$$

where,
$C_{e H} \longrightarrow g_{h \tau \tau}$
$C_{u H} \longrightarrow g_{h c c}, g_{h t t}$
$C_{d H} \longrightarrow g_{h b b}$
The corresponding rescaling factors $\kappa_{V}=\frac{g_{h V V}}{g_{h V V}^{S M V}}$ and $\kappa_{f}=\frac{g_{h f f}}{g_{h f f}^{S M}}$, are
$\kappa_{Z}=1+\delta_{h}+\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} C_{H D}-\frac{1}{2} \delta_{G_{F}}$
$\kappa_{W}=1+\delta_{h}-\frac{1}{2}\left(c_{W}^{2}-s_{W}^{2}\right)\left(4 s_{W} c_{W} \frac{v^{2}}{\Lambda^{2}} C_{H W B}+c_{W}^{2} \frac{v^{2}}{\Lambda^{2}} C_{H D}+\delta_{G_{F}}\right)$
$\kappa_{f}=1+\delta_{h}-\frac{1}{2} \delta_{G_{F}}-\frac{v}{m_{f}} \frac{v^{2}}{\Lambda^{2}} \frac{C_{f H}}{\sqrt{2}}$
where
$\delta_{h} \rightarrow$ NP corrections to $h$ wave-function renormalization
$\delta_{G} \rightarrow$ NP corrections to $G_{F}$

## The fitting procedure $\rightarrow$ HEPfit

- Both electroweak and Higgs observables are calculated as a SM core plus corrections:
$\hookrightarrow$ the SM cores include all existing higher order corrections
$\hookrightarrow$ the NP corrections are at the lowest order in all SM couplings.
- Experimental results are taken from the most recent published analyses
$\hookrightarrow$ see Higgs analyses example on next slide
- The fit procedure uses BAT (Bayesan Analysis Toolkit) where experimental likelihoods are taken as priors, and posteriors are calculated using a Markov Chain Monte Carlo. (Caldwell et al., arXiv:0808.2552)
- Original code SUSYfit morphed into a completely new object: HEPfit


Courtesy of S. Mishima
$\rightarrow$ stand-alone mode: to compute a Bayesan statistical analysis. or
$\rightarrow$ library mode: to compute observables in a given model (libHEPfit.a and HEPfit.h)
$\rightarrow$ add external modules for your favorite model

## The SM fit to ElectroWeak Precision Observables

|  | Data | Fit | Indirect | Pull |
| :--- | :---: | :---: | :---: | :---: |
| $\alpha_{s}\left(M_{Z}^{2}\right)$ | $0.1185 \pm 0.0005$ | $0.1185 \pm 0.0005$ | $0.1184 \pm 0.0028$ | -0.0 |
| $\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}^{2}\right)$ | $0.02750 \pm 0.00033$ | $0.02741 \pm 0.00026$ | $0.02725 \pm 0.00042$ | -0.5 |
| $M_{Z}[\mathrm{GeV}]$ | $91.1875 \pm 0.0021$ | $91.1879 \pm 0.0020$ | $91.199 \pm 0.011$ | +1.0 |
| $m_{t}[\mathrm{GeV}]$ | $173.34 \pm 0.76$ | $173.6 \pm 0.7$ | $176.9 \pm 2.5$ | +1.3 |
| $m_{H}[\mathrm{GeV}]$ | $125.09 \pm 0.24$ | $125.09 \pm 0.24$ | $97.40 \pm 25.59$ | -0.9 |
| $M_{W}[\mathrm{GeV}]$ | $80.385 \pm 0.015$ | $80.365 \pm 0.006 x s$ | $80.361 \pm 0.007$ | -1.4 |
| $\Gamma_{W}[\mathrm{GeV}]$ | $2.085 \pm 0.042$ | $2.0890 \pm 0.0005$ | $2.0890 \pm 0.0005$ | +0.1 |
| $\Gamma_{Z}[\mathrm{GeV}]$ | $2.4952 \pm 0.0023$ | $2.4945 \pm 0.0004$ | $2.4945 \pm 0.0004$ | -0.3 |
| $\sigma_{h}^{0}[\mathrm{nb}]$ | $41.540 \pm 0.037$ | $41.488 \pm 0.003$ | $41.488 \pm 0.003$ | -1.4 |
| $\sin ^{2} \theta_{\mathrm{eff}}^{\text {lept }}\left(Q_{\mathrm{FB}}^{\mathrm{had}}\right)$ | $0.2324 \pm 0.0012$ | $0.23144 \pm 0.00009$ | $0.23144 \pm 0.00009$ | -0.8 |
| $P_{\tau}^{\mathrm{pol}}$ | $0.1465 \pm 0.0033$ | $0.1477 \pm 0.0007$ | $0.1477 \pm 0.0007$ | +0.4 |
| $\mathcal{A}_{\ell}(\mathrm{SLD})$ | $0.1513 \pm 0.0021$ | $0.1477 \pm 0.0007$ | $0.1472 \pm 0.0008$ | -1.9 |
| $\mathcal{A}_{c}$ | $0.670 \pm 0.027$ | $0.6682 \pm 0.0003$ | $0.6682 \pm 0.0003$ | -0.1 |
| $\mathcal{A}_{b}$ | $0.923 \pm 0.020$ | $0.93466 \pm 0.00006$ | $0.93466 \pm 0.00006$ | +0.6 |
| $A_{\mathrm{F}}^{0, \ell}$ | $0.0171 \pm 0.0010$ | $0.0164 \pm 0.0002$ | $0.0163 \pm 0.0002$ | -0.8 |
| $A_{\mathrm{FB}}^{0, c}$ | $0.0707 \pm 0.0035$ | $0.0740 \pm 0.0004$ | $0.0740 \pm 0.0004$ | +0.9 |
| $A_{\mathrm{FB}}^{0, b}$ | $0.0992 \pm 0.0016$ | $0.1035 \pm 0.0005$ | $0.1039 \pm 0.0005$ | +2.8 |
| $R_{\ell}^{\mathrm{b}}$ | $20.767 \pm 0.025$ | $20.752 \pm 0.003$ | $20.752 \pm 0.003$ | -0.6 |
| $R_{c}^{0}$ | $0.1721 \pm 0.0030$ | $0.17224 \pm 0.00001$ | $0.17224 \pm 0.00001$ | +0.0 |
| $R_{b}^{0}$ | $0.21629 \pm 0.00066$ | $0.21578 \pm 0.00003$ | $0.21578 \pm 0.00003$ | -0.8 |

(indirect: determined without using the corresponding exp. information)
Validated agains ZFITTER: thanks to the Authors.

Good agreement between direct and indirect determination of the values of the input parameters

fit of EWPO




## Limits on BSM physics from EWPO








## Higgs couplings analysis



ATLAS: arXiv:1507.04548
$\mu=\sum_{i} w_{i} r_{i}$ where
$w_{i}=\frac{[\sigma \times \mathrm{Br}]_{i}}{\left[\sigma_{\mathrm{SM}} \times \mathrm{Br}_{\mathrm{SM}}\right]_{i}}$
$r_{i}=\frac{\epsilon_{i}\left[\sigma_{\mathrm{SM}} \times \mathrm{Br}_{\mathrm{SM}}\right]_{i}}{\sum_{j} \epsilon_{j}^{\mathrm{SM}}\left[\sigma_{\mathrm{SM}} \times \mathrm{Br}_{\mathrm{SM}}\right]_{j}}$
$\sigma_{i}=\sigma_{i}^{\mathrm{SM}}+\delta \sigma_{i}$
$\Gamma_{j}=\Gamma_{j}^{S M}+\delta \Gamma_{j}$
$\sigma_{i}^{\mathrm{SM}}, \Gamma_{j}^{\mathrm{SM}} \rightarrow \mathrm{YR}$ of HXSWG
$\delta \sigma_{i} \rightarrow \mathrm{FR}+$ Madgraph + Kfactors
$\delta \Gamma_{j} \rightarrow$ eHdecay
$h \gamma \gamma: \operatorname{ATLAS}(1408.7084), \operatorname{CMS}(1407.0558)$
$h \tau \tau: A T L A S(1501.04943), \operatorname{CMS}(1401.5041)$
$h Z Z:$ ATLAS (1408.5191), CMS(1412.8662)
$h W W: \operatorname{ATLAS}(1412.2641,1506.06641)$,
CMS(1312.1129)
$h b b: \operatorname{ATLAS}(1409.6212,1503.05066)$,
CMS(1310.3687, 1408.1682),
CDF (1301.6668), D0 (1303.0823)

## Bounds on EFT in terms of $\kappa_{V}$ and $\kappa_{f}$





Higgs+EWPO

|  | $68 \%$ | $95 \%$ | correlation |  |
| :---: | :---: | :---: | :---: | :---: |
| $\kappa_{V}$ | $1.02 \pm 0.02$ | $[0.99,1.06]$ | 1.00 |  |
| $\kappa_{f}$ | $1.03 \pm 0.10$ | $[0.85,1.23]$ | 0.15 | 1.00 |

## Zooming into $\kappa_{V}$ and $\kappa_{f} \ldots$


$\ddot{y}$



|  | $68 \%$ | $95 \%$ | correlation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\kappa_{W}$ | $1.00 \pm 0.05$ | $[0.89,1.10]$ | 1.00 |  |  |
| .4 | $\kappa_{Z}$ | $1.07 \pm 0.11$ | $[0.85,1.27]$ | -0.17 | 1.00 |

Flavor universality




| Higgs only |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\kappa_{f} \rightarrow \kappa_{u}, \kappa_{d}, \kappa_{l}\right)$ |  |  |  |  |  |  |
|  | $68 \%$ | $95 \%$ | correlation |  |  |  |
| $\kappa_{V}$ | $0.97 \pm 0.08$ | $[0.80,1.13]$ | 1.00 |  |  |  |
| $\kappa_{l}$ | $1.01 \pm 0.14$ | $[0.73,1.30]$ | 0.54 | 1.00 |  |  |
| 2 | $\kappa_{u}$ | $0.97 \pm 0.13$ | $[0.73,1.25]$ | 0.43 | 0.41 | 1.00 |
| $\kappa_{v}$ | $\kappa_{d}$ | $0.91 \pm 0.21$ | $[0.48,1.34]$ | 0.81 | 0.61 | 0.77 |




Higgs+EWPO

|  | $68 \%$ | $95 \%$ | correlation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\kappa_{V}$ | $1.02 \pm 0.02$ | $[0.99,1.06]$ | 1.00 |  |  |  |
| $\kappa_{l}$ | $1.07 \pm 0.12$ | $[0.82,1.32]$ | 0.15 | 1.00 |  |  |
| $\kappa_{u}$ | $1.01 \pm 0.12$ | $[0.80,1.27]$ | 0.10 | 0.24 | 1.00 |  |
| $\kappa_{d}$ | $1.01 \pm 0.13$ | $[0.77,1.31]$ | 0.31 | 0.38 | 0.78 | 1.00 |

## $95 \%$ bounds on coefficients of $\mathrm{d}=6$ interactions

$\rightarrow$ Switching on one operator at a time

|  | Only EW | Only Higgs | EW + Higgs |
| :---: | :---: | :---: | :---: |
| Coefficient | $C_{i} / \Lambda^{2}\left[\mathrm{TeV}^{-2}\right]$ <br> at $95 \%$ | $C_{i} / \Lambda^{2}\left[\mathrm{TeV}^{-2}\right]$ <br> at $95 \%$ | $C_{i} / \Lambda^{2}\left[\mathrm{TeV} V^{-2}\right]$ <br> at $95 \%$ |
| $C_{H G}$ | -- | $[-0.0051,0.0092]$ |  |
| $C_{H W}$ | -- | $[-0.034,0.014]$ | $[-0.0051,0.0092]$ |
| $C_{H B}$ | -- | $[-0.034,0.014]$ |  |
| $C_{H W B}$ | $[-0.010,0.004]$ | $[-0.0087,0.0040]$ | $[-0.0087,0.0040]$ |
| $C_{H D}$ | $[-0.032,0.005]$ | $[-1.1,1.6]$ | $[-0.0073,0.0053]$ |
| $C_{H D}$ | -- | $[-1.4,1.3]$ | $[-0.032,0.005]$ |
| $C_{H L}^{(1)}$ | $[-0.005,0.012]$ | -- | $[-0.005,1.3]$ |
| $C_{H L}^{(3)}$ | $[-0.012,0.006]$ | $[-0.47,0.66]$ | $[-0.012,0.006]$ |
| $C_{H e}$ | $[-0.017,0.005]$ | -- | $[-0.017,0.005]$ |
| $C_{H Q}^{(1)}$ | $[-0.027,0.041]$ | $[-2,11]$ | $[-0.027,0.041]$ |
| $C_{H Q}^{(3)}$ | $[-0.011,0.013]$ | $[-0.42,0.05]$ | $[-0.012,0.013]$ |
| $C_{H u}$ | $[-0.071,0.077]$ | $[-4.6,0.8]$ | $[-0.072,0.076]$ |
| $C_{H d}$ | $[-0.14,0.06]$ | $[-2,14]$ | $[-0.14,0.06]$ |
| $C_{H u d}$ | -- | - | -- |
| $C_{e H}$ | -- | $[-0.027,0.049]$ | $[-0.027,0.049]$ |
| $C_{u H}$ | -- | $[-0.62,0.33]$ | $[-0.62,0.33]$ |
| $C_{d H}$ | -- | $[-0.062,0.059]$ | $[-0.062,0.059]$ |

Correlations among coefficients? Interesting to study patterns

bigger dots $\rightarrow$ better constrained ( $\Lambda=1 \mathrm{TeV}$ )
$95 \%$ bounds on scale of new physics $\Lambda$

|  | Only EW |  | Only Higgs |  | EW + Higgs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Lambda[\mathrm{TeV}]$ |  | $\Lambda[\mathrm{TeV}]$ |  | $\Lambda[\mathrm{TeV}]$ |  |
| Coefficient | $C_{i}=-1$ | $C_{i}=1$ | $C_{i}=-1$ | $C_{i}=1$ | $C_{i}=-1$ | $C_{i}=1$ |
| $C_{H G}$ | -- | -- | 14.1 | 10.4 | 14.1 | 10.4 |
| $C_{H W}$ | -- | -- | 5.5 | 8.4 | 5.5 | 8.4 |
| $C_{H B}$ | -- | -- | 10.7 | 15.7 | 10.7 | 15.7 |
| $C_{H W B}$ | 9.8 | 15.1 | 11.3 | 7.7 | 11.7 | 13.7 |
| $C_{H D}$ | 5.6 | 14.1 | 0.9 | 0.8 | 5.6 | 14.0 |
| $C_{H \square}$ | -- | -- | 0.8 | 0.9 | 0.8 | 0.9 |
| $C_{H L}^{(1)}$ | 14.1 | 9.3 | -- | -- | 14.1 | 9.3 |
| $C_{H L}^{(3)}$ | 9.3 | 12.8 | 1.5 | 1.2 | 9.3 | 12.7 |
| $C_{H e}$ | 7.7 | 13.6 | -- | -- | 7.7 | 13.6 |
| $C_{H Q}^{(1)}$ | 6.0 | 5.0 | 0.7 | 0.3 | 6.0 | 5.0 |
| $C_{H Q}^{(3)}$ | 9.4 | 8.7 | 1.5 | 4.4 | 9.2 | 8.9 |
| $C_{H u}$ | 3.8 | 3.6 | 0.5 | 1.1 | 3.7 | 3.6 |
| $C_{H d}$ | 2.7 | 4.0 | 0.6 | 0.3 | 2.7 | 4.0 |
| $C_{H u d}$ | -- | -- | -- | -- | -- | -- |
| $C_{e H}$ | -- | -- | 6.0 | 4.5 | 6.0 | 4.5 |
| $C_{u H}$ | -- | -- | 1.3 | 1.7 | 1.3 | 1.7 |
| $C_{d H}$ | -- | -- | 4.0 | 4.1 | 4.0 | 4.1 |

$\rightarrow$ For $\left|C_{i}\right| \simeq 1 \mathrm{NP}$ is beyond LHC reach, need perturbative $C_{i}$.

## Outlook and Conclusions

- Indirect evidence for new physics might play a crucial role in Run II of the LHC, although we hope it won't be everything we'll have.
- The EFT formalism offers the possibility of a general and systematic approach to study indirect effects of new physics living at higher energy scales.
- We have presented a new global model-independent analysis of EWPO and Higgs observables (signal strengths) based on the EFT extension of SM up to $d=6$ operators.
- Fit performed through HEPfit using the Bayesan Analysis Toolkit (BAT). Bounds derived for Higgs-boson anomalous couplings
$\rightarrow$ in terms $\kappa_{i}$ rescaling factors.
$\rightarrow$ in terms of $C_{i}$ coefficients of EFT operators $(\leftrightarrow \Lambda)$.
Nice interplay of EWPO+Higgs observables in constraining NP.
- $C_{i} \simeq 1$ seems to push $\Lambda$ beyond LHC reach, perturbative coefficients still allow for not too large $\Lambda$.
- One important ingredient that is usually very powerful in discriminating against new physics is flavor: we will include it gradually.
- Assuming/not assuming a model is a double-edged sword: HEPfit allows you to do both. It will be interesting to study model-independent patterns that could push us beyond the investigation of individual coefficients.
- The formalism of EFT is very powerful: still we need to understand its applicability to the case at hand before we can really profit from the full RGE machinery that comes with it.

