Global analysis of non-standard Higgs-boson couplings with HEPfit

> Laura Reina Florida State University

Higgs Effective Field Theory Workshop 2015 (HEFT 2015) University of Chicago - November, 5 2015

<u>With</u>: J. de Blas¹, M. Ciuchini², E. Franco¹, D. Ghosh³, S. Mishima⁴, M. Pierini⁵, L. Silvestrini¹

1) University of Roma "La Sapienza", 2) University of Roma Tre, 3) Weizmann Institute of Science, 4) KEK, 5) CERN.

<u>Thanks</u> to the extended HEPfit collaboration.

Outline

- Motivations and general framework
 - → LHC-Run I: found $M_H \simeq 125$ GeV, new physics → TeV range.
 - $\rightarrow\,$ LHC-Run II: higher statistics, higher precision, new mass thresholds.
 - \rightarrow Explore indirect evidence of new physics from electroweak+Higgs fits while searching for direct evidence.
 - \rightarrow Model-independent Higgs-boson studies: EFT approach.
- The HEPfit package: a global fit of existing electroweak precision data and Higgs-boson observables
 - \rightarrow General structure of the package, main ingredients.
 - \rightarrow Statistical analysis handled using a Bayesan approach (BAT).
 - $\rightarrow\,$ Structured to allow both a model-independent and a model-specific fit.
- Main results for Higgs-boson couplings and effective interactions
 - \rightarrow In terms κ_i rescaling factors.
 - \rightarrow In terms of C_i coefficients of EFT operators.
- Outlook and conclusions

References

Results have been presented at several meetings, in particular:

- \rightarrow Lepton-Photon 2015: see plenary talk by M. Ciuchini
- \rightarrow SUSY 2015: see parallel talks by J. de Blas and P. Ayan (on HEPfit)

and will soon appear in a paper together with the official release of HEPfit.

A first round of results were published in last year ICHEP 2014 proceedings: \rightarrow arXiv:1410.4204 and arXiv:1410.6940

Previous paper on EW fit based on SUSYfit:

 \rightarrow Ciuchini, Franco, Mishima, Silvestrini, arXiv:1306.4644

The HEPfit developer repository: https://github.com/silvest/HEPfit

General Framework

EFT extension of the SM Lagrangian by d > 4 operators,

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d, \text{ with } \mathcal{L}_d = \sum_i C_i \mathcal{O}_i, \quad [\mathcal{O}_i] = d,$$

We consider:

- \rightarrow d = 6 operators only, obeying SM gauge symmetry, L and B conservation
- \rightarrow one Higgs doublet of $SU(2)_L$, linearly realized SSB
- → assuming flavor universality: 59 operators [basis by Grzadkowski et al., JHEP 1010 (2010) 085]
- \rightarrow CP even and with at least one Higgs: 27 operators
- \rightarrow contributing to the observables considered: 17 operators
- \rightarrow with a specific model in mind: running $C_i(\Lambda) \rightarrow C_i(M_{EW})$ more meaningful
- \rightarrow otherwise take $C_i = C_i(M_{EW})$, no running included

$$\mathcal{O}_{HG} = (H^{\dagger}H) G^{A}_{\mu\nu} G^{A\mu\nu}$$

$$\mathcal{O}_{HW} = (H^{\dagger}H) W^{I}_{\mu\nu} W^{I\mu\nu}$$

$$\mathcal{O}_{HB} = (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{HWB} = (H^{\dagger}\tau^{I}H) W^{I}_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{HD} = (H^{\dagger}D^{\mu}H)^{*} (H^{\dagger}D_{\mu}H)$$

$$\mathcal{O}_{H\Box} = (H^{\dagger}H)^{*} \Box (H^{\dagger}H)$$

- \rightarrow corrections to:
 - oblique parameters
 - *hVV*
 - WWZ and $WW\gamma$

$$\begin{aligned} \mathcal{O}_{HL}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L) \\ \mathcal{O}_{HL}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{L}\tau^{I}\gamma^{\mu}L) \\ \mathcal{O}_{He} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R}) \\ \mathcal{O}_{HQ}^{(1)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q) \\ \mathcal{O}_{HQ}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q) \\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{u}_{R}\gamma^{\mu}u_{R}) \\ \mathcal{O}_{Hd} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R}) \\ \mathcal{O}_{Hud} &= i(\widetilde{H}^{\dagger}D_{\mu}H)(\overline{u}_{R}\gamma^{\mu}d_{R}) \end{aligned}$$

single-fermionic-vector-current operators

$$\mathcal{O}_{eH} = (H^{\dagger}H)(\bar{L} e_R H)$$

$$\mathcal{O}_{uH} = (H^{\dagger}H)(\bar{Q} u_R \tilde{H})$$

$$\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q} d_R H)$$

$$\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q} d_R H)$$

$$\mathcal{O}_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$$

<u>Notice</u>: $Vf\bar{f}$ and indirect effects (e.g. G_F) strongly constrained by EW precision observables.

Upon SSB, direct effect on Higgs-boson couplings

$$\mathcal{L}_{\text{Higgs}} = \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{hVff} + \mathcal{L}_{hTff}$$

each term contains the interactions to either vector bosons or fermions. <u>Ex.1</u>: \mathcal{L}_{hVV} contains all the non-fermionic interactions with the SM vector bosons,

$$\mathcal{L}_{hVV} = h \left(g_{hZZ}^{(1)} Z_{\mu\nu} Z^{\mu\nu} + g_{hZZ}^{(2)} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + g_{hZZ}^{(3)} Z_{\mu} Z^{\mu} - \right. \\ \left. + g_{hAA} A_{\mu\nu} A^{\mu\nu} + g_{hZA}^{(1)} Z_{\mu\nu} A^{\mu\nu} + g_{hZA}^{(2)} Z_{\nu} \partial_{\mu} A^{\mu\nu} - \right. \\ \left. + g_{hWW}^{(1)} W_{\mu\nu}^{+} W^{-\mu\nu} + \left(g_{hWW}^{(2)} W_{\nu}^{+} D_{\mu} W^{-\mu\nu} + (g_{hWW}^{(2)})^{*} W_{\nu}^{-} D_{\mu} W^{+\mu\nu} \right) \right. \\ \left. + g_{hWW}^{(3)} W_{\mu}^{+} W^{-\mu} + g_{hGG} \mathrm{Tr} \left[G_{\mu\nu} G^{\mu\nu} \right] \right)$$

where (both directly and indirectly $\rightarrow G_F$, field renormalization, ...),

$$C_{HG} \longrightarrow g_{hGG}$$

$$C_{HW} \longrightarrow g_{hWW}^{(1)}$$

$$C_{HW}, C_{HB}, C_{HWB} \longrightarrow g_{hZZ}^{(1)}, g_{hZA}^{(1)}, g_{hAA}^{(1)}$$

$$C_{HD} \longrightarrow g_{hZZ}^{(3)}$$

while Ex. 2: \mathcal{L}_{hff} contains the interactions with the fermions only:

$$\mathcal{L}_{hff} = h \sum_{f} g_{hff} \overline{f_L} f_R + \text{h.c.}$$

where,

 $\begin{array}{l} C_{eH} \longrightarrow g_{h\tau\tau} \\ C_{uH} \longrightarrow g_{hcc}, g_{htt} \\ C_{dH} \longrightarrow g_{hbb} \end{array}$

The corresponding rescaling factors $\kappa_V = \frac{g_{hVV}}{g_{hVV}^{SM}}$ and $\kappa_f = \frac{g_{hff}}{g_{hff}^{SM}}$, are

$$\kappa_{Z} = 1 + \delta_{h} + \frac{1}{2} \frac{v^{2}}{\Lambda^{2}} C_{HD} - \frac{1}{2} \delta_{G_{F}}$$

$$\kappa_{W} = 1 + \delta_{h} - \frac{1}{2} (c_{W}^{2} - s_{W}^{2}) (4s_{W}c_{W} \frac{v^{2}}{\Lambda^{2}} C_{HWB} + c_{W}^{2} \frac{v^{2}}{\Lambda^{2}} C_{HD} + \delta_{G_{F}})$$

$$\kappa_{f} = 1 + \delta_{h} - \frac{1}{2} \delta_{G_{F}} - \frac{v}{m_{f}} \frac{v^{2}}{\Lambda^{2}} \frac{C_{fH}}{\sqrt{2}}$$

where

 $\delta_h \to \text{NP}$ corrections to h wave-function renormalization $\delta_G \to \text{NP}$ corrections to G_F

The fitting procedure $\rightarrow \texttt{HEPfit}$

- Both electroweak and Higgs observables are calculated as a SM core plus corrections:
 - \hookrightarrow the SM cores include all existing higher order corrections
 - \hookrightarrow the NP corrections are at the lowest order in all SM couplings.
- Experimental results are taken from the most recent published analyses
 → see Higgs analyses example on next slide
- The fit procedure uses BAT (Bayesan Analysis Toolkit) where experimental likelihoods are taken as priors, and posteriors are calculated using a Markov Chain Monte Carlo. (Caldwell et al., arXiv:0808.2552)
- Original code SUSYfit morphed into a completely new object: HEPfit

Courtesy of S. Mishima

- \rightarrow stand-alone mode: to compute a Bayesan statistical analysis. or
- → library mode: to compute observables in a given model (libHEPfit.a and HEPfit.h)
- \rightarrow add external modules for your favorite model

The SM fit to ElectroWeak Precision Observables

	Data	Fit	Indirect	Pull
$\alpha_s(M_Z^2)$	0.1185 ± 0.0005	0.1185 ± 0.0005	0.1184 ± 0.0028	-0.0
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	0.02750 ± 0.00033	0.02741 ± 0.00026	0.02725 ± 0.00042	-0.5
$M_Z [\text{GeV}]$	91.1875 ± 0.0021	91.1879 ± 0.0020	91.199 ± 0.011	+1.0
$m_t [{ m GeV}]$	173.34 ± 0.76	173.6 ± 0.7	176.9 ± 2.5	+1.3
$m_H \; [\text{GeV}]$	125.09 ± 0.24	125.09 ± 0.24	97.40 ± 25.59	-0.9
$M_W \; [\text{GeV}]$	80.385 ± 0.015	$80.365\pm0.006xs$	80.361 ± 0.007	-1.4
$\Gamma_W \; [\text{GeV}]$	2.085 ± 0.042	2.0890 ± 0.0005	2.0890 ± 0.0005	+0.1
$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023	2.4945 ± 0.0004	2.4945 ± 0.0004	-0.3
$\sigma_h^0 [{ m nb}]$	41.540 ± 0.037	41.488 ± 0.003	41.488 ± 0.003	-1.4
$\sin^2 \theta_{\rm eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.2324 ± 0.0012	0.23144 ± 0.00009	0.23144 ± 0.00009	-0.8
$P_{ au}^{ m pol}$	0.1465 ± 0.0033	0.1477 ± 0.0007	0.1477 ± 0.0007	+0.4
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.1477 ± 0.0007	0.1472 ± 0.0008	-1.9
\mathcal{A}_{c}	0.670 ± 0.027	0.6682 ± 0.0003	0.6682 ± 0.0003	-0.1
\mathcal{A}_b	0.923 ± 0.020	0.93466 ± 0.00006	0.93466 ± 0.00006	+0.6
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.0164 ± 0.0002	0.0163 ± 0.0002	-0.8
$A_{\mathrm{FB}}^{\bar{0},\bar{c}}$	0.0707 ± 0.0035	0.0740 ± 0.0004	0.0740 ± 0.0004	+0.9
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	0.1035 ± 0.0005	0.1039 ± 0.0005	+2.8
R_{ℓ}^{0}	20.767 ± 0.025	20.752 ± 0.003	20.752 ± 0.003	-0.6
$R_c^{\check{0}}$	0.1721 ± 0.0030	0.17224 ± 0.00001	0.17224 ± 0.00001	+0.0
R_b^0	0.21629 ± 0.00066	0.21578 ± 0.00003	0.21578 ± 0.00003	-0.8

(indirect: determined without using the corresponding exp. information) Validated agains ZFITTER: thanks to the Authors.

Good agreement between direct and indirect determination of the values of the input parameters

0.01

0.005

80.34

80.36 80.38

Limits on BSM physics from EWPO

Higgs couplings analysis

$$\mu = \sum_{i} w_{i} r_{i} \text{ where}$$

$$w_{i} = \frac{[\sigma \times \text{Br}]_{i}}{[\sigma_{\text{SM}} \times \text{Br}_{\text{SM}}]_{i}}$$

$$r_{i} = \frac{\epsilon_{i} [\sigma_{\text{SM}} \times \text{Br}_{\text{SM}}]_{i}}{\sum_{j} \epsilon_{j}^{\text{SM}} [\sigma_{\text{SM}} \times \text{Br}_{\text{SM}}]_{j}}$$

$$\sigma_{i} = \sigma_{i}^{\text{SM}} + \delta\sigma_{i}$$

$$\Gamma_{j} = \Gamma_{j}^{\text{SM}} + \delta\Gamma_{j}$$

 $\sigma_i^{\text{SM}}, \Gamma_j^{\text{SM}} \to \text{YR of HXSWG}$ $\delta \sigma_i \to \text{FR+Madgraph+Kfactors}$ $\delta \Gamma_j \to \text{eHdecay}$

 $h\gamma\gamma$: ATLAS(1408.7084), CMS(1407.0558) $h\tau\tau$: ATLAS(1501.04943), CMS(1401.5041) hZZ: ATLAS(1408.5191), CMS(1412.8662) hWW: ATLAS(1412.2641,1506.06641), CMS(1312.1129) hbb: ATLAS(1409.6212, 1503.05066), CMS(1310.3687, 1408.1682), CDF (1301.6668), D0 (1303.0823)

Bounds on EFT in terms of κ_V and κ_f

Higgs only

	68%	95%	corre	lation
κ_V	1.01 ± 0.04	[0.93, 1.10]	1.00	
κ_f	1.03 ± 0.10	[0.83, 1.23]	0.31	1.00

Higgs+EWPO

	68%	95%	corre	lation
κ_V	1.02 ± 0.02	[0.99, 1.06]	1.00	
κ_f	1.03 ± 0.10	[0.85, 1.23]	0.15	1.00

Zooming into κ_V and κ_f ...

Custodial symmetry $(\kappa_V \to \kappa_W, \kappa_Z)$

Higgs only

		68%	95%	correlation		L
	κ_W	1.00 ± 0.05	[0.89, 1.10]	1.00		
 1.4	κ_Z	1.07 ± 0.11	[0.85, 1.27]	-0.17	1.00	
κw	κ_{f}	1.01 ± 0.11	[0.80, 1.22]	0.41	-0.14	1.00

 $(\kappa_f \to \kappa_u, \kappa_d, \kappa_l)$

Higgs only

	68%	95%		correl	lation	
κ_V	0.97 ± 0.08	[0.80, 1.13]	1.00			
κ_l	1.01 ± 0.14	[0.73, 1.30]	0.54	1.00		
κ_u	0.97 ± 0.13	[0.73, 1.25]	0.43	0.41	1.00	
κ_d	0.91 ± 0.21	[0.48, 1.34]	0.81	0.61	0.77	1.00

I	Higgs+EV	VPO

2

ĸγ

	68%	95%		correl	ation	
κ_V	1.02 ± 0.02	[0.99, 1.06]	1.00			
κ_l	1.07 ± 0.12	[0.82, 1.32]	0.15	1.00		
κ_u	1.01 ± 0.12	[0.80, 1.27]	0.10	0.24	1.00	
κ_d	1.01 ± 0.13	[0.77, 1.31]	0.31	0.38	0.78	1.00

95% bounds on coefficients of d=6 interactions

 \rightarrow Switching on one operator at a time

	Only EW	Only Higgs	EW + Higgs
	$C_i/\Lambda^2 \; [{ m TeV}^{-2}]$	$C_i/\Lambda^2 \; [{ m TeV}^{-2}]$	$C_i/\Lambda^2 [{ m TeV}^{-2}]$
Coefficient	at 95%	at 95%	at 95%
C_{HG}		[-0.0051, 0.0092]	[-0.0051, 0.0092]
C_{HW}		[-0.034, 0.014]	[-0.034, 0.014]
C_{HB}		[-0.0087, 0.0040]	[-0.0087, 0.0040]
C_{HWB}	[-0.010, 0.004]	[-0.008, 0.017]	[-0.0073, 0.0053]
C_{HD}	[-0.032, 0.005]	[-1.1, 1.6]	[-0.032,0.005]
$C_{H\Box}$		[-1.4, 1.3]	[-1.4, 1.3]
$C_{HL}^{(1)}$	[-0.005, 0.012]		[-0.005, 0.012]
$C_{HL}^{(3)}$	[-0.012, 0.006]	[-0.47, 0.66]	[-0.012, 0.006]
C_{He}^{HE}	[-0.017, 0.005]		[-0.017,0.005]
$C_{HQ}^{(1)}$	[-0.027, 0.041]	[-2,11]	[-0.027, 0.041]
$C^{(3)}_{HQ}$	[-0.011, 0.013]	[-0.42,0.05]	[-0.012, 0.013]
C_{Hu}	[-0.071, 0.077]	[-4.6, 0.8]	[-0.072, 0.076]
C_{Hd}	[-0.14, 0.06]	[-2, 14]	[-0.14, 0.06]
C_{Hud}			
C_{eH}		[-0.027, 0.049]	[-0.027, 0.049]
C_{uH}		[-0.62, 0.33]	[-0.62, 0.33]
C_{dH}		[-0.062, 0.059]	[-0.062, 0.059]

Correlations among coefficients? Interesting to study patterns

bigger dots \rightarrow better constrained ($\Lambda = 1 \text{ TeV}$)

95% bounds on scale of new physics Λ

	Only EW		Only Higgs		EW + Higgs	
	Λ [TeV]		$\Lambda \ [\text{TeV}]$		$\Lambda ~[{ m TeV}]$	
Coefficient	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$
C_{HG}			14.1	10.4	14.1	10.4
C_{HW}			5.5	8.4	5.5	8.4
C_{HB}			10.7	15.7	10.7	15.7
C_{HWB}	9.8	15.1	11.3	7.7	11.7	13.7
C_{HD}	5.6	14.1	0.9	0.8	5.6	14.0
$C_{H\square}$			0.8	0.9	0.8	0.9
$C_{HL}^{(1)}$	14.1	9.3			14.1	9.3
$C_{HL}^{(3)}$	9.3	12.8	1.5	1.2	9.3	12.7
C_{He}	7.7	13.6			7.7	13.6
$C_{HQ}^{(1)}$	6.0	5.0	0.7	0.3	6.0	5.0
$C_{HQ}^{(3)}$	9.4	8.7	1.5	4.4	9.2	8.9
C_{Hu}	3.8	3.6	0.5	1.1	3.7	3.6
C_{Hd}	2.7	4.0	0.6	0.3	2.7	4.0
C_{Hud}	——		——			
C_{eH}			6.0	4.5	6.0	4.5
C_{uH}			1.3	1.7	1.3	1.7
C_{dH}			4.0	4.1	4.0	4.1

 \rightarrow For $|C_i| \simeq 1$ NP is beyond LHC reach, need perturbative C_i .

Outlook and Conclusions

- Indirect evidence for new physics might play a crucial role in Run II of the LHC, although we hope it won't be everything we'll have.
- The EFT formalism offers the possibility of a general and systematic approach to study indirect effects of new physics living at higher energy scales.
- We have presented a new global model-independent analysis of EWPO and Higgs observables (signal strengths) based on the EFT extension of SM up to d = 6 operators.
- Fit performed through HEPfit using the Bayesan Analysis Toolkit (BAT). Bounds derived for Higgs-boson anomalous couplings
 - $\rightarrow\,$ in terms κ_i rescaling factors.
 - \rightarrow in terms of C_i coefficients of EFT operators ($\leftrightarrow \Lambda$).

Nice interplay of EWPO+Higgs observables in constraining NP.

- $C_i \simeq 1$ seems to push Λ beyond LHC reach, perturbative coefficients still allow for not too large Λ .
- One important ingredient that is usually very powerful in discriminating against new physics is <u>flavor</u>: we will include it gradually.

- Assuming/not assuming a model is a double-edged sword: HEPfit allows you to do both. It will be interesting to study model-independent patterns that could push us beyond the investigation of individual coefficients.
- The formalism of EFT is very powerful: still we need to understand its applicability to the case at hand before we can really profit from the full RGE machinery that comes with it.