Fitting Higgs couplings in an EFT approach

Oscar Éboli

Universidade de São Paulo

HEFT-2015

Goal: comprehensive analysis of couplings of the Higgs

- assume a narrow CP-even scalar
- use SFitter to fit available LHC data: [SFitter: Gonzalez-Fraile, Klute, Plehn, Rauch, Zerwas]

production/decay mode	ATLAS	CMS
$H \to WW$	X	X
$H \to ZZ$	X	Х
$H o \gamma \gamma$	X	X
$H \to \tau \bar{\tau}$	X	Х
$H \to b\overline{b}$	X	Х
$H \to Z\gamma$	X	Х
$H \rightarrow \text{invisible}$	X	Х
159] $\overline{t\overline{t}H}$ production	X	X
[14] kinematic distributions	X	
[37] off-shell rate	X	X

- frequentist likelihood everywhere
- SFitter is flexible to study theoretical uncertainties [flat distribution ; uncorrelated uncertainties for production]

1. How well does the SM describe the Higgs data?

[Corbett, OE, Gonçalves, Gonzalez-Fraile, Plehn, Rauch: arXiv:1505.05516]

• assume SM operators with free couplings: [nonlinear sigma model: Alonso et al.; Buchalla et al.; Brivio et al,...]

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \Delta_W \ g m_W H \ W^{\mu} W_{\mu} + \Delta_Z \ \frac{g}{2c_w} m_Z H \ Z^{\mu} Z_{\mu} - \sum_{\tau,b,t} \Delta_f \ \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right)$$
$$+ \Delta_g F_G \ \frac{H}{v} \ G_{\mu\nu} G^{\mu\nu} + \Delta_\gamma F_A \ \frac{H}{v} \ A_{\mu\nu} A^{\mu\nu} + \text{invisible decays}$$

corresponding changes in the Higgs couplings:

$$g_{x} = g_{x}^{\text{SM}} (1 + \Delta_{x})$$

$$g_{\gamma} = g_{\gamma}^{\text{SM}} (1 + \Delta_{\gamma}^{\text{SM}} + \Delta_{\gamma}) \equiv g_{\gamma}^{\text{SM}} (1 + \Delta_{\gamma}^{\text{SM}+\text{NP}})$$

$$g_{g} = g_{g}^{\text{SM}} (1 + \Delta_{g}^{\text{SM}} + \Delta_{g}) \equiv g_{g}^{\text{SM}} (1 + \Delta_{g}^{\text{SM}+\text{NP}})$$

$$\text{tree level} \qquad \text{new physics}$$

[keeping values for finite loop masses in calculations]

- $\Delta_x = -2$ flips the sign of the SM couplings
- only rate measurements (of course!)

- presenting the SM like solutions with $\Delta_g = \Delta_\gamma = 0$
- slowly increasing the number of free parameters
- Δ_H equal tree level deviations

controls hgg coupling (expected 15% error)

• adding new loop contributions $\Delta_g \ \Delta_\gamma$ (7 parameter fit)

• analogously $\Delta_{\gamma Z}$ < 0.7 (1.8) at 68% (95%) CL

- multiple solutions due to degeneracy $\Delta_x = 0 \iff \Delta_x = -2$
- Δ_t and Δ_g contribute to gluon fusion production

 Δ_t plays indirect role

$$\Delta_W > -$$

• further interesting correlations due to $\sigma(pp \rightarrow h \rightarrow \gamma \gamma)$

$$\sigma_{i \to H \to f}^{\text{on-shell}} \propto \frac{g_i^2(m_H) g_f^2(m_H)}{\Gamma_H}$$

• adding invisible decays (8 parameter fit)

- minor upward shift of all couplings due to correlation with total width
- there is no significant deviations from the SM predictions

• flat vs gaussian distributions for the theoretical uncertainties

- presently statistical errors dominate
- gaussian distributions lead to slightly larger 68% CL bands

• correlated vs uncorrelated uncertainties (7 parameter fit):

correlated uncertainties lead to slightly smaller errors

- new state belongs to SU(2) doublet
- consider SU(2) x U(1) invariant dimension-6 lagrangian

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n + \cdots$$

- There are 59 "independent" dimension-six operators [Buchmuller & Wyler; Grzadkowski]
- our choice for the boson operators is [Corbett, OE, Gonzalez-Fraile, Gonzalez-Garcia]

[Hagiwara, Ishihara, Szalapski, Zeppenfeld]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \qquad \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

with
$$D_{\mu}\Phi = \left(\partial_{\mu} + ig'B_{\mu}/2 + ig\sigma_a W^a_{\mu}/2\right)\Phi$$
 $\hat{W}_{\mu\nu} = ig\sigma^a W^a_{\mu\nu}/2$
 $\hat{B}_{\mu\nu} = ig'B_{\mu\nu}/2$

- new state belongs to SU(2) doublet
- consider SU(2) x U(1) invariant dimension-6 lagrangian

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n + \cdots$$

- There are 59 "independent" dimension-six operators [Buchmuller & Wyler; Grzadkowski]
- our choice for the boson operators is [Corbett, OE, Gonzalez-Fraile, Gonzalez-Garcia]

[Hagiwara, Ishihara, Szalapski, Zeppenfeld]

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) & \mathcal{O}_{\Phi,\chi} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \\ eliminated with EOM \\ \text{with} & D_{\mu} \Phi = \left(\partial_{\mu} + ig' B_{\mu}/2 + ig\sigma_{a} W^{a}_{\mu}/2 \right) \Phi & \hat{W}_{\mu\nu} = ig\sigma^{a} W^{a}_{\mu\nu}/2 \end{split}$$

 $B_{\mu\nu} = ig' B_{\mu\nu}/2$

- new state belongs to SU(2) doublet
- consider SU(2) x U(1) invariant dimension-6 lagrangian

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n + \cdots$$

- There are 59 "independent" dimension-six operators [Buchmuller & Wyler; Grzadkowski]
- our choice for the boson operators is [Corbett, OE, Gonzalez-Fraile, Gonzalez-Garcia]

[Hagiwara, Ishihara, Szalapski, Zeppenfeld]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{W} = \Phi^{\dagger} \hat{\mathcal{C}}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{K1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \qquad \mathcal{O}_{M} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) \\ \text{constrained by EWPD} \qquad \text{eliminated with EOM} \\ \text{with} \qquad D_{\mu} \Phi = (\partial_{\mu} + ig' B_{\mu}/2 + ig\sigma_{a} W^{a}_{\mu}/2) \Phi \qquad \hat{W}_{\mu\nu} = ig\sigma^{a} W^{a}_{\mu\nu}/2 \\ \hat{\mathcal{O}}_{\mu\nu} = ig\sigma^{a} W^{a}_{\mu\nu}/2$$

 $B_{\mu\nu} = ig B_{\mu\nu}/2$

- new state belongs to SU(2) doublet
- consider SU(2) x U(1) invariant dimension-6 lagrangian

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n + \cdots$$

- There are 59 "independent" dimension-six operators [Buchmuller & Wyler; Grzadkowski]
- our choice for the boson operators is [Corbett, OE, Gonzalez-Fraile, Gonzalez-Garcia]

[Hagiwara, Ishihara, Szalapski, Zeppenfeld]

$$\mathcal{L}_{\text{eff}}^{HVV} = -\frac{\alpha_s}{8\pi} \frac{f_{GG}}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2}$$

• 10 effective HVV couplings are generated

$$\mathcal{L}^{HVV} = g_{Hgg} H G^{a}_{\mu\nu} G^{a\mu\nu} + g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_{HZ\gamma} A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZ\gamma} H A_{\mu\nu} Z^{\mu\nu} + g^{(1)}_{HZZ} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZZ} H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_{HZZ} H Z_{\mu} Z^{\mu} + g^{(1)}_{HWW} (W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.}) + g^{(2)}_{HWW} H W^{+}_{\mu\nu} W^{-\mu\nu} + g^{(3)}_{HWW} H W^{+}_{\mu} W^{-\mu}$$

that depend on 6 Wilson coefficients

$$g_{Hgg} = -\frac{\alpha_s}{8\pi} \frac{f_{GG}v}{\Lambda^2} \qquad g_{HZ\gamma}^{(1)} = \frac{g^2v}{2\Lambda^2} \frac{s_w(f_W - f_B)}{2c_w}$$

$$g_{H\gamma\gamma} = -\frac{g^2vs_w^2}{2\Lambda^2} \frac{f_{BB} + f_{WW}}{2} \qquad g_{HZ\gamma}^{(2)} = \frac{g^2v}{2\Lambda^2} \frac{s_w(2s_w^2f_{BB} - 2c_w^2f_{WW})}{2c_w}$$

$$g_{HZZ}^{(1)} = \frac{g^2v}{2\Lambda^2} \frac{c_w^2f_W + s_w^2f_B}{2c_w^2} \qquad g_{HWW}^{(1)} = \frac{g^2v}{2\Lambda^2} \frac{f_W}{2}$$

$$g_{HZZ}^{(2)} = -\frac{g^2v}{2\Lambda^2} \frac{s_w^4f_{BB} + c_w^4f_{WW}}{2c_w^2} \qquad g_{HWW}^{(2)} = -\frac{g^2v}{2\Lambda^2} f_{WW}$$

$$g_{HZZ}^{(3)} = m_Z^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2}\right) \qquad g_{HWW}^{(3)} = m_W^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2}\right)$$

Summarizing

coefficients related by gauge invariance

• we should also include fermionic operators for the third generation

$$\mathcal{O}_{e\Phi,33} = (\Phi^{\dagger}\Phi)(\bar{L}_{3}\Phi e_{R,3}) \qquad \mathcal{O}_{u\Phi,33} = (\Phi^{\dagger}\Phi)(\bar{Q}_{3}\tilde{\Phi}u_{R,3}) \qquad \mathcal{O}_{d\Phi,33} = (\Phi^{\dagger}\Phi)(\bar{Q}_{3}\Phi d_{R,3})$$

leading to

$$\mathcal{L}_{\text{eff}}^{Hff} = \frac{f_{\tau} m_{\tau}}{v \Lambda^2} \mathcal{O}_{e\Phi,33} + \frac{f_b m_b}{v \Lambda^2} \mathcal{O}_{d\Phi,33} + \frac{f_t m_t}{v \Lambda^2} \mathcal{O}_{u\Phi,33} + \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2}$$

implying that

$$\mathcal{L}^{Hff} = g_f H \bar{f}_L f_R + \text{h.c.} \quad \text{with} \quad g_f = -\frac{m_f}{v} \left(1 - \frac{v^2}{2\Lambda^2} f_{\Phi,2} - \frac{v^2}{\sqrt{2}\Lambda^2} f_f \right)$$

- decays and cross sections evaluated with FeynRules+MadGraph
- SM K-factors
- difference to previous analyses: f_t
- there are new correlations in addition to $f_{
 m GG} imes f_t$

• the 9 parameter fit leads to

- strongest constraints on f_{WW} and f_{BB}
- next are f_W and $f_{\phi,2}$

Kinematic distributions [Ellis & Sanz & You;...],

- $(\mathcal{O}_B, \mathcal{O}_W, \mathcal{O}_{BB}, \mathcal{O}_{WW})$ lead to new Lorentz structures
- limited to fully documented distributions
- using VH and WBF
- unitarity might be an issue:
 - \checkmark take the results at face value (with care!)
 - \checkmark introduce ad-hoc form factors
 - \checkmark keep only the phase space region not sensitive to UV completion

we adopted the 1st and 3rd strategies

• To avoid double counting we used asymmetries in VH:

$$A_i = \frac{\mathrm{bin}_{i+1} - \mathrm{bin}_i}{\mathrm{bin}_{i+1} + \mathrm{bin}_i}$$

FeynRules + MadGraph + Pythia + PGS4/DELPHES

• we used ATLAS results for VH (0,1,2 leptons) and WBF $\gamma\gamma jj$

• for the WBF analysis $A_{1} = \frac{\sigma(\Delta\phi_{jj} < \frac{\pi}{3}) + \sigma(\Delta\phi_{jj} > \frac{2\pi}{3}) - \sigma(\frac{\pi}{3} < \Delta\phi_{jj} < \frac{2\pi}{3})}{\sigma(\Delta\phi_{jj} < \frac{\pi}{3}) + \sigma(\Delta\phi_{jj} > \frac{2\pi}{3}) + \sigma(\frac{\pi}{3} < \Delta\phi_{jj} < \frac{2\pi}{3})}$ $A_{2} = \frac{\sigma(\Delta\phi_{jj} > \frac{2\pi}{3}) - \sigma(\Delta\phi_{jj} < \frac{\pi}{3})}{\sigma(\Delta\phi_{jj} > \frac{2\pi}{3}) + \sigma(\Delta\phi_{jj} < \frac{\pi}{3})},$ $A_{3} = \frac{\sigma(\Delta\phi_{jj} > \frac{5\pi}{6}) - \sigma(\frac{2\pi}{3} < \Delta\phi_{jj} < \frac{5\pi}{6})}{\sigma(\Delta\phi_{jj} > \frac{5\pi}{6}) + \sigma(\frac{2\pi}{3} < \Delta\phi_{jj} < \frac{5\pi}{6})}$

• Presently the distributions impact mainly \mathcal{O}_B and \mathcal{O}_W

take this is a proof of principle for the use of distributions!

• EFT range of validity from unitarity violation [Corbett, OE, Gonzalez-Garcia] [Renard & Gounaris; Baur & Zeppenfeld;]

$$\begin{vmatrix} \frac{f_{\Phi 2}}{\Lambda^2} s \\ \frac{f_W}{\Lambda^2} s \end{vmatrix} \leq 105 \implies \sqrt{s} < 2.3 \text{ TeV}$$
$$\begin{vmatrix} \frac{f_W}{\Lambda^2} s \\ \frac{f_B}{\Lambda^2} s \end{vmatrix} \leq 205 \implies \sqrt{s} < 5.3 \text{ TeV}$$
$$\begin{vmatrix} \frac{f_B}{\Lambda^2} s \\ \frac{f_WW}{\Lambda^2} s \end{vmatrix} \leq 640 \implies \sqrt{s} < 3.7 \text{ TeV}$$
$$\begin{vmatrix} \frac{f_{WW}}{\Lambda^2} s \\ \frac{f_{BB}}{\Lambda^2} s \end{vmatrix} \leq 200 \implies \sqrt{s} < 2.6 \text{ TeV}$$
$$\begin{vmatrix} \frac{f_{BB}}{\Lambda^2} s \\ \frac{f_{BB}}{\Lambda^2} s \end{vmatrix} \leq 880 \implies \sqrt{s} < 9.4 \text{ TeV}$$

 $VV \to VV$ and $f\bar{f} \to VV$

• the operators \mathcal{O}_B and \mathcal{O}_W modify TGC's

$$\Delta \kappa_{\gamma} = \frac{g^2 v^2}{8\Lambda^2} \left(f_W + f_B \right)$$

$$\Delta g_1^Z = \frac{g^2 v^2}{8c^2 \Lambda^2} f_W$$

$$\Delta \kappa_Z = \frac{g^2 v^2}{8c^2 \Lambda^2} \left(c^2 f_W - s^2 f_B \right)$$

• the operators \mathcal{O}_B and \mathcal{O}_W modify TGC's

nice interplay between TGC and Higgs physics

• side effect: TGC data still not good enough to decouple \mathcal{O}_B and \mathcal{O}_W

• the operators \mathcal{O}_B and \mathcal{O}_W modify TGC's

nice interplay between TGC and Higgs physics

• side effect: TGC data still not good enough to decouple \mathcal{O}_B and \mathcal{O}_W

4. Off-shell Higgs measurements

• Off-shell Higgs measurements are a window into its width: [Kauer & Passarino; Caola & Melnikov; Ellis & Williams]

$$\sigma_{i \to H \to f}^{\text{on-shell}} \propto \frac{g_i^2(m_H) g_f^2(m_H)}{\Gamma_H} \qquad \text{vs} \qquad \sigma_{i \to H^* \to f}^{\text{off-shell}} \propto g_i^2(m_{4\ell}) g_f^2(m_{4\ell})$$

- $m_{4\ell}$ is also useful to break the $\Delta_t \times \Delta_g$ degeneracy [Buschmann, Gonçalves, Kuttimalai, Schönherr, Kraus, Plehn]
- In this analysis we worked in the delta framework

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \Delta_W \ gm_W H \ W^{\mu} W_{\mu} + \Delta_Z \ \frac{g}{2c_w} m_Z H \ Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \ \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right)$$
$$+ \Delta_g F_G \ \frac{H}{v} \ G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \ \frac{H}{v} \ A_{\mu\nu} A^{\mu\nu} + \text{invisible decays} + \text{unobservable decays}$$
$$additional \ contribution!$$

• sample of Feynman diagrams

leading to

 $\overline{\mathcal{M}_{gg \to ZZ}} = (1 + \Delta_Z) \left[(1 + \Delta_t) \mathcal{M}_t + \Delta_g \mathcal{M}_g \right] + \mathcal{M}_c$

$$\begin{aligned} \frac{d\sigma}{dm_{4\ell}} &= (1 + \Delta_Z) \left[(1 + \Delta_t) \frac{d\sigma_{tc}}{dm_{4\ell}} + \Delta_g \frac{d\sigma_{gc}}{dm_{4\ell}} \right] \\ &+ (1 + \Delta_Z)^2 \left[(1 + \Delta_t)^2 \frac{d\sigma_{tt}}{dm_{4\ell}} + (1 + \Delta_t) \Delta_g \frac{d\sigma_{tg}}{dm_{4\ell}} + \Delta_g^2 \frac{d\sigma_{gg}}{dm_{4\ell}} \right] + \frac{d\sigma_c}{dm_{4\ell}} \end{aligned}$$
sensitive to the sign!

 \bullet top mass effects are different for $\Delta_g \, \, {
m and} \, \, \Delta_t$

• sample of Feynman diagrams

leading to

ullet top mass effects are different for $\Delta_g \,\, { m and} \,\, \Delta_t$

• it is interesting to look at 1d profile likelihoods

$\Gamma_H < 9.3 \ \Gamma_H^{\rm SM}$ at 68%CL

slight preference for flipped-sign solution

• The observed Higgs is fully consistent with the SM

 $BR_{inv} < 0.31 \text{ at } 95\% \text{ CL}$ $\Gamma_H < 9.3 \Gamma_H^{SM} \text{ at } 68\% \text{CL}$

- kinematic distributions and off-shell measurements can play a major role
- We tested different ways to include the theoretical uncertainties.

• The observed Higgs is fully consistent with the SM

 $BR_{inv} < 0.31 \text{ at } 95\% \text{ CL}$ $\Gamma_H < 9.3 \Gamma_H^{SM} \text{ at } 68\% \text{CL}$

- kinematic distributions and off-shell measurements can play a major role
- We tested different ways to include the theoretical uncertainties.

backup slides

• We can also analyze distributions in the non-linear sigma model [Brivio, et al, arXiv: 1311.1823]

,

$$\begin{aligned} \mathcal{P}_{C}(h) &= -\frac{v^{2}}{4} \operatorname{Tr}(\mathbf{V}^{\mu}\mathbf{V}_{\mu})\mathcal{F}_{C}(h) \\ \mathcal{P}_{T}(h) &= \frac{v^{2}}{4} \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu})\operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu})\mathcal{F}_{T}(h) \\ \mathcal{P}_{H}(h) &= \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h)\mathcal{F}_{H}(h) \\ \mathcal{P}_{W}(h) &= -\frac{g^{2}}{4}W^{a}_{\mu\nu}W^{a\mu\nu}\mathcal{F}_{W}(h) \\ \mathcal{P}_{G}(h) &= -\frac{g^{2}}{4}G^{a}_{\mu\nu}G^{a\mu\nu}\mathcal{F}_{G}(h) \\ \mathcal{P}_{B}(h) &= -\frac{g'^{2}}{4}B_{\mu\nu}B^{\mu\nu}\mathcal{F}_{B}(h) \\ \mathcal{P}_{\Box H} &= \frac{1}{v^{2}}(\partial_{\mu}\partial^{\mu}h)^{2}\mathcal{F}_{\Box H}(h) \\ \mathcal{P}_{1}(h) &= gg'B_{\mu\nu}\operatorname{Tr}(\mathbf{T}W^{\mu\nu})\mathcal{F}_{1}(h) \\ \mathcal{P}_{2}(h) &= ig'B_{\mu\nu}\operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu},\mathbf{V}^{\nu}])\mathcal{F}_{2}(h) \end{aligned}$$

$$\mathcal{P}_{3}(h) = ig \operatorname{Tr}(W_{\mu\nu}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}])\mathcal{F}_{3}(h)$$
$$\mathcal{P}_{4}(h) = ig' B_{\mu\nu} \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu})\partial^{\nu}\mathcal{F}_{4}(h)$$
$$\mathcal{P}_{5}(h) = ig \operatorname{Tr}(W_{\mu\nu}\mathbf{V}^{\mu})\partial^{\nu}\mathcal{F}_{5}(h)$$
$$\mathcal{P}_{6}(h) = (\operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu}))^{2}\mathcal{F}_{6}(h)$$
$$\mathcal{P}_{7}(h) = \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu})\partial_{\nu}\partial^{\nu}\mathcal{F}_{7}(h)$$
$$\mathcal{P}_{8}(h) = \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu})\partial^{\mu}\mathcal{F}_{8}(h)\partial^{\nu}\mathcal{F}_{8}'(h)$$
$$\mathcal{P}_{9}(h) = \operatorname{Tr}((\mathcal{D}_{\mu}\mathbf{V}^{\mu})^{2})\mathcal{F}_{9}(h)$$
$$\mathcal{P}_{10}(h) = \operatorname{Tr}(\mathbf{V}_{\nu}\mathcal{D}_{\mu}\mathbf{V}^{\mu})\partial^{\nu}\mathcal{F}_{10}(h)$$

$$\begin{split} \frac{v^2}{2} \frac{f_{BB}}{\Lambda^2} &= a_B \,, & \frac{v^2}{2} \frac{f_{WW}}{\Lambda^2} = a_W \,, & \frac{v^2}{(4\pi)^2} \frac{f_{GG}}{\Lambda^2} = a_G \,, \\ \frac{v^2}{8} \frac{f_B}{\Lambda^2} &= a_4 \,, & -\frac{v^2}{4} \frac{f_W}{\Lambda^2} = a_5 \,, & v^2 \frac{f_{\phi,2}}{\Lambda^2} = c_H \,, \\ v^2 \frac{f_t}{\Lambda^2} &= a'_t \,, & v^2 \frac{f_b}{\Lambda^2} = a'_b \,, & v^2 \frac{f_\tau}{\Lambda^2} = a'_\tau \,. \end{split}$$

$$\begin{aligned} \mathcal{O}_{BB} &= \frac{v^2}{2} \mathcal{P}_B(h) \,, & \mathcal{O}_{WW} &= \frac{v^2}{2} \mathcal{P}_W(h) \,, \\ \mathcal{O}_{GG} &= -\frac{2v^2}{g_s^2} \mathcal{P}_G(h) \,, & \mathcal{O}_{BW} &= \frac{v^2}{8} \mathcal{P}_1(h) \,, \\ \mathcal{O}_B &= \frac{v^2}{16} \mathcal{P}_2(h) + \frac{v^2}{8} \mathcal{P}_4(h) \,, & \mathcal{O}_W &= \frac{v^2}{8} \mathcal{P}_3(h) - \frac{v^2}{4} \mathcal{P}_5(h) \,, \\ \mathcal{O}_{\Phi,1} &= \frac{v^2}{2} \mathcal{P}_H(h) - \frac{v^2}{4} \mathcal{F}(h) \mathcal{P}_T(h) \,, & \mathcal{O}_{\Phi,2} &= v^2 \mathcal{P}_H(h) \,, \\ \mathcal{O}_{\Phi,4} &= \frac{v^2}{2} \mathcal{P}_H(h) + \frac{v^2}{2} \mathcal{F}(h) \mathcal{P}_C(h) \,, \\ \mathcal{O}_{\Box\Phi} &= \frac{v^2}{2} \mathcal{P}_{\Box H}(h) + \frac{v^2}{8} \mathcal{P}_6(h) + \frac{v^2}{4} \mathcal{P}_7(h) - v^2 \mathcal{P}_8(h) - \frac{v^2}{4} \mathcal{P}_9(h) - \frac{v^2}{2} \mathcal{P}_{10}(h) \end{aligned}$$

$$\begin{split} \frac{v^2}{2} \frac{f_{BB}}{\Lambda^2} &= a_B \,, & \frac{v^2}{2} \frac{f_{WW}}{\Lambda^2} &= a_W \,, & \frac{v^2}{(4\pi)^2} \frac{f_{GG}}{\Lambda^2} &= a_G \,, \\ \frac{v^2}{8} \frac{f_B}{\Lambda^2} &= a_4 \,, & -\frac{v^2}{4} \frac{f_W}{\Lambda^2} &= a_5 \,, & v^2 \frac{f_{\phi,2}}{\Lambda^2} &= c_H \,, \\ v^2 \frac{f_t}{\Lambda^2} &= a'_t \,, & v^2 \frac{f_b}{\Lambda^2} &= a'_b \,, & v^2 \frac{f_\tau}{\Lambda^2} &= a'_\tau \,. \end{split}$$

There are many operators at this order

$$\mathcal{P}_{W} = -\frac{g^{2}}{4} W_{\mu\nu}^{a} W^{a\mu\nu} \mathcal{F}_{W}(h)$$

$$\mathcal{P}_{B} = -\frac{g^{\prime 2}}{4} B_{\mu\nu} B^{\mu\nu} \mathcal{F}_{B}(h)$$

$$\mathcal{P}_{G} = -\frac{g^{2}_{s}}{4} \mathcal{G}_{\mu\nu}^{A} \mathcal{G}^{A\mu\nu} \mathcal{F}_{G}(h)$$

$$\mathcal{P}_{H} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h \mathcal{F}_{H}(h)$$

$$\mathcal{P}_{C} = -\frac{v^{2}}{4} \operatorname{Tr}(\mathbf{V}^{\mu} \mathbf{V}_{\mu}) \mathcal{F}_{C}(h)$$

$$\mathbf{T} \quad \mathcal{P}_{T} = \frac{v^{2}}{4} \operatorname{Tr}(\mathbf{T} \mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\mu}) \mathcal{F}_{T}(h)$$

$$S \quad \mathcal{P}_{1} = gg' B_{\mu\nu} \operatorname{Tr}(\mathbf{T} \mathbf{W}^{\mu\nu}) \mathcal{F}_{1}(h)$$

$$\mathcal{P}_{2} = ig' B_{\mu\nu} \operatorname{Tr}(\mathbf{T} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{2}(h)$$

$$\mathcal{P}_{3} = ig \operatorname{Tr}(W_{\mu\nu} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{3}(h)$$

$$\mathcal{P}_{4} = ig' B_{\mu\nu} \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{4}(h)$$

$$\mathcal{P}_{5} = ig \operatorname{Tr}(W_{\mu\nu} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{5}(h)$$

$$QGV \quad \mathcal{P}_{6} = (\operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}))^{2} \mathcal{F}_{6}(h)$$

$$\mathcal{P}_{7} = \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}_{\nu}) \partial^{\mu} \mathcal{F}_{8}(h) \partial^{\nu} \mathcal{F}_{8}'(h)$$

$$\mathcal{P}_{9} = \operatorname{Tr}((\mathcal{D}_{\mu} \mathbf{V}^{\mu})^{2}) \mathcal{F}_{9}(h)$$

$$\mathcal{P}_{10} = \operatorname{Tr}(\mathbf{V}_{\nu} \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{10}(h)$$

 $\mathcal{P}_{11} = (\mathsf{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu}))^2 \mathcal{F}_{11}(h) \mathsf{QGV}$ $\mathcal{P}_{12} = g^2 \operatorname{Tr}(\mathbf{T} W_{\mu\nu}))^2 \mathcal{F}_{12}(h)$ $\mathcal{P}_{13} = ig \operatorname{Tr}(\mathbf{T} W_{\mu\nu}) \operatorname{Tr}(\mathbf{T} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{13}(h)$ $\mathcal{P}_{14} = g \varepsilon^{\mu\nu\rho\lambda} \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{V}_{\nu}W_{\rho\lambda}) \mathcal{F}_{14}(h)$ $\mathcal{P}_{15} = \mathsf{Tr}(\mathbf{T}\mathcal{D}_{\mu}\mathbf{V}^{\mu})\,\mathsf{Tr}(\mathbf{T}\mathcal{D}_{\nu}\mathbf{V}^{\nu})\mathcal{F}_{15}(h)$ $\mathcal{P}_{16} = \mathsf{Tr}([\mathsf{T}, \mathsf{V}_{\nu}]\mathcal{D}_{\mu}\mathsf{V}^{\mu}) \,\mathsf{Tr}(\mathsf{T}\mathsf{V}^{\nu})\mathcal{F}_{16}(h)$ $\mathcal{P}_{17} = ig \operatorname{Tr}(\mathbf{T} W_{\mu\nu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{17}(h)$ $\mathcal{P}_{18} = \mathsf{Tr}(\mathsf{T}[\mathsf{V}_{\mu},\mathsf{V}_{\nu}]) \,\mathsf{Tr}(\mathsf{T}\mathsf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{18}(h)$ $\mathcal{P}_{19} = \mathsf{Tr}(\mathbf{T}\mathcal{D}_{\mu}\mathbf{V}^{\mu})\,\mathsf{Tr}(\mathbf{T}\mathbf{V}_{\nu})\partial^{\nu}\mathcal{F}_{19}(h)$ $\mathcal{P}_{20} = \mathrm{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu})\partial_{\nu}\mathcal{F}_{20}(h)\partial^{\nu}\mathcal{F}_{20}'(h)$ $\mathcal{P}_{21} = (\mathsf{Tr}(\mathsf{TV}_{\mu}))^2 \partial_{\nu} \mathcal{F}_{21}(h) \partial^{\nu} \mathcal{F}_{21}'(h)$ $\mathcal{P}_{22} = \mathsf{Tr}(\mathsf{T}\mathsf{V}_{\mu}) \,\mathsf{Tr}(\mathsf{T}\mathsf{V}_{\nu}) \partial^{\mu} \mathcal{F}_{22}(h) \partial^{\mu} \mathcal{F}'_{22}(h)$ $\mathcal{P}_{23} = \mathsf{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu})(\mathsf{Tr}(\mathbf{T}\mathbf{V}_{\nu}))^{2}\mathcal{F}_{23}(h)$ QGV $\mathcal{P}_{24} = \mathsf{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu})\,\mathsf{Tr}(\mathbf{T}\mathbf{V}^{\mu})\,\mathsf{Tr}(\mathbf{T}\mathbf{V}^{\nu})\mathcal{F}_{24}(h)$ $\mathcal{P}_{25} = (\mathsf{Tr}(\mathsf{TV}_{\mu}))^2 \partial_{\nu} \partial^{\nu} \mathcal{F}_{25}(h)$ $\mathcal{P}_{26} = (\mathrm{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \, \mathrm{Tr}(\mathbf{T}\mathbf{V}_{\nu}))^2 \mathcal{F}_{26}(h)$

generalization of the Appelquist-Bernard-Longhitano basis

Limits on the Higgs couplings

	7 parameter analysis				8 parameter analysis		
	Best fit	$68\%~{\rm CL}$ intervals	95% CL intervals	Best fit	$68\%~{\rm CL}$ intervals	95% CL intervals	
Δ_W	-0.160	(-0.335, -0.05)	(-0.46, 0.085)	-0.0867	(-0.265, 0.025)	(-0.38, 0.155)	
Δ_Z	0.0559	(-0.07, 0.195)	(-0.205, 0.305)	0.158	(0.01, 0.28)	(-0.125, 0.405)	
Δ_t	0.159	(-0.2, 0.46)	(-0.585, 0.75)	0.188	(-0.13, 0.57)	(-0.505, 0.845)	
Δ_b	-0.265	(-0.565, -0.01)	(-0.82, 0.295)	-0.193	(-0.5, 0.06)	(-0.77, 0.375)	
Δ_{τ}	-0.0492	(-0.25, 0.095)	(-0.395, 0.28)	0.0417	(-0.17, 0.185)	(-0.33, 0.375)	
Δ_{γ}	0.226	(0.09, 0.40)	(-0.065, 0.555)	0.248	(0.1, 0.435)	(-0.055, 0.595)	
Δ_g	-0.479	(-0.83, -0.125)	(-1, 0.37)	-0.430	(-0.855, -0.13)	(-1, 0.385)	
BR_{inv}				0.157	(0.048, 0.226)	(0., 0.306)	
$\Delta_{\gamma}^{\mathrm{SM+NP}}$	-0.0191	(-0.17, 0.125)	(-0.295, 0.285)	0.0892	(-0.09, 0.22)	(-0.22, 0.395)	
$\Delta_g^{ m SM+NP}$	0.230	(-0.4, 0.115)	(-0.51, 0.35)	-0.163	(-0.335, 0.04)	(-0.45, 0.115)	
	$(-2\ln L)_{\min} = 66.4, \ (-2\ln L)_{SM} = 72.1$			$(-2\ln L)_{\min} = 63.4, (-2\ln L)_{SM} = 72.1$			

	Rate-based analysis			Analysis with kinematic distributions		
	Best fit	68% CL intervals	$95\%~{\rm CL}$ intervals	Best fit	68% CL intervals	95% CL intervals
$f_{GG}/\Lambda^2~({ m TeV^{-2}})$	-19.6	(-24, 16.8)	(-27.9, -12.9)	-24.39	(-27, -18.9)	(-30, -14.1)
	-4.79	(-7.2, 0.6)	(-9.3, 9.3)	-3.75	(-7.2, -1.2)	(-9.6, 9.6)
	4.42	(1.2, 7.2)	(13.5, 28.8)	3.94	(0.6, 7.8)	(15.3, 30)
	19.35	(16.8, 25.1)		24.18	(19.2, 27)	
$f_{WW}/\Lambda^2~({ m TeV^{-2}})$	4.36	(-0.4, 9.5)	(-3.7, 13.7)	0.296	(-2.95, 2.9), (9.65, 9.8)	(-4.3, 4.4), (15.3, 30)
$f_{BB}/\Lambda^2~({ m TeV^{-2}})$	-4.72	(-8.6, 2.8)	(-13.4, 6.1)	-0.518	(-2.45, 4.3)	(-10, 7)
$f_{\phi,2}/\Lambda^2~({ m TeV^{-2}})$	6.15	(0, 12.5)	(-5, 18)	1.03	(-4.75, 6)	(-8, 10), (12.25, 19.75)
$f_W/\Lambda^2~({ m TeV^{-2}})$	-6.38	(-12.4, 7)	(-13, 22.5)	1.12	(-2.25, 3.75)	(-5.75, 7.25)
$f_B/\Lambda^2~({ m TeV^{-2}})$	-29.04	(-45.2, -5.6)	(-55.4, 13)	-4.16	(-12.2, 9.4)	(-45.2, 14.8)
$f_b/\Lambda^2~({ m TeV}^{-2})$	4.63	(-2.1, 7.8)	(-9.6, 10.8)	0.83	(-6, 6.6)	(-13.2, 19.2)
	33.7	(24.9, 47.3)	(13.2, 61.2)	46.4	(33, 56.4)	(24, 67.8)
$f_{ au}/\Lambda^2~({ m TeV^{-2}})$	-3.94	(-9, 2)	(-12, 4.5)	-1.88	(-4, 3.5)	(-9,7)
	41.7	(35, 51)	(24, 56.5)	43.9	(39, 53.5)	(23.5, 60)
$f_t/\Lambda^2~({ m TeV}^{-2})$	-5.03	(-12.8, 1.6)	(-21.3, 10.9)	-4.97	(-12.9, 1.8)	(-18.5, 10.2)
	43.4	(34, 54.4)	(24.9, 63.4)	53.37	(41, 59.9)	(24.2, 66.9)
	$(-2\ln L)_{\min} = 66.7, \ (-2\ln L)_{SM} = 72.1$		$(-2\ln L)_{\min} = 88.4, (-2\ln L)_{SM} = 91.9$			

- decays and cross sections evaluated with FeynRules+MadGraph
- SM K-factors
- difference to previous analyses: f_t
- there are new correlations in addition to $f_{
 m GG} imes f_t$

