Robust Collider Limits on Heavy-Mediator DM
 Andrea Wulzer
 with D.Racco and F.Zwirner

Introduction

The nature of DM is among the most pressing questions in HEP
Enormous variety of radically different scenarios, extremely challenging to setup a comprehensive exploration strategy

Introduction

The nature of DM is among the most pressing questions in HEP
Enormous variety of radically different scenarios, extremely challenging to setup a comprehensive exploration strategy

Thermally produced WIMP is one motivated possibility, but still too broad to be thought of as a single model:

- Mass in the GeV to few TeV range
- Coupling of rough EW order (1/10 to 4π)

Introduction

The nature of DM is among the most pressing questions in HEP
Enormous variety of radically different scenarios, extremely challenging to setup a comprehensive exploration strategy

Thermally produced WIMP is one motivated possibility, but still too broad to be thought of as a single model:

- Mass in the GeV to few TeV range
- Coupling of rough EW order (1/10 to 4π)
- Maybe connected to EWSB, but no compelling model anyhow

Introduction

The nature of DM is among the most pressing questions in HEP
Enormous variety of radically different scenarios, extremely challenging to setup a comprehensive exploration strategy

Thermally produced WIMP is one motivated possibility, but still too broad to be thought of as a single model:

- Mass in the GeV to few TeV range
- Coupling of rough EW order ($1 / 10$ to 4π)
- Maybe connected to EWSB, but no compelling model anyhow

Model-independence, i.e. broad exploration of the parameter space is mandatory here!

Introduction

Heavy-Mediation (not necessarily mediator) hypothesis: DM coupling to SM from high scale dynamics

$$
M_{\mathrm{Med}} \gg m_{\mathrm{DM}}
$$

Can we fully test this hypothesis in a model-independent way?

Introduction

Heavy-Mediation (not necessarily mediator) hypothesis: DM coupling to SM from high scale dynamics

$$
M_{\mathrm{Med}} \gg m_{\mathrm{DM}}
$$

Can we fully test this hypothesis in a model-independent way?

In the appropriate kinematical region, EFT can do the job

$$
\mathcal{L}_{\mathrm{int}}=\frac{1}{M_{*}^{2}} \sum_{i} c_{i} O_{i}
$$

EFT definitely applies to low-momentum reaction:
$\left\{\begin{array}{l}\text { 1) thermal relic calculation } \\ \text { 2) direct search limits } \\ \text { 3) indirect search limits }\end{array}\right.$

Introduction

Heavy-Mediation (not necessarily mediator) hypothesis: DM coupling to SM from high scale dynamics

$$
M_{\mathrm{Med}} \gg m_{\mathrm{DM}}
$$

Can we fully test this hypothesis in a model-independent way?

In the appropriate kinematical region, EFT can do the job

$$
\mathcal{L}_{\mathrm{int}}=\frac{1}{M_{*}^{2}} \sum_{i} c_{i} O_{i}
$$

EFT definitely applies to low-momentum reaction:
$\left\{\begin{array}{l}\text { 1) thermal relic calculation } \\ \text { 2) direct search limits } \\ 3) \text { indirect search limits }\end{array}\right.$
what instead about ...
4) collider limits ??

Introduction

EFT only holds below its cutoff $M_{\text {cut }}$
All reactions occurring above are not well described by the EFT All reactions occurring below are perfectly predictable

Introduction

EFT only holds below its cutoff $M_{\text {cut }}$
All reactions occurring above are not well described by the EFT All reactions occurring below are perfectly predictable

"The cutoff is physical !!"

R.Barbieri, shouting at sbdy in SNS corridor
Cutoff is part of the EFT definition, one of its free parameters.

Introduction

EFT only holds below its cutoff $M_{\text {cut }}$
All reactions occurring above are not well described by the EFT All reactions occurring below are perfectly predictable

"The cutoff is physical !!"

R.Barbieri, shouting at sbdy in SNS corridor
Cutoff is part of the EFT definition, one of its free parameters. In any specific microscopic model, we might read its true value

$$
M_{\mathrm{cut}} \sim M_{\mathrm{Med}}
$$

mass of the specific "mediators", or scale of strong UV theory

Introduction

EFT only holds below its cutoff $M_{\text {cut }}$
All reactions occurring above are not well described by the EFT All reactions occurring below are perfectly predictable

LHC might carry us above the cutoff:

Introduction

EFT only holds below its cutoff $M_{\text {cut }}$
All reactions occurring above are not well described by the EFT All reactions occurring below are perfectly predictable

LHC might carry us above the cutoff:

however restricting the signal to the predictable region sets lower bound on the "true" signal, which holds for any mediator model

$$
\left.\sigma_{E F T}^{S}\right|_{E_{\mathrm{cm}}<M_{\mathrm{cut}}} \leq \sigma_{\text {true }}^{S}<\sigma_{\mathrm{exc}}
$$

compared with exclusion upper bound, model indep. limit is set

ATLAS mono-jet recast

chosen operator: $\quad \mathcal{L}_{\text {int }}=-\frac{1}{M_{*}^{2}}\left(\bar{X} \gamma^{\mu} \gamma^{5} X\right)\left(\sum_{q} \bar{q} \gamma_{\mu} \gamma^{5} q\right)$
counting in four SR

signal region	SR1	SR2	SR3	SR4
$p_{T}^{\text {jet }}$ and MET	>120	>220	>350	>500
$\sigma_{\mathrm{exc}}[\mathrm{pb}]$	2.7	0.15	4.810^{-2}	1.510^{-2}

restricted signal definition:

$$
\sigma_{\mathrm{SR} i}\left(M_{*}, m_{D M}, M_{\mathrm{cut}}\right)=\sigma\left(M_{*}, m_{D M}, M_{\mathrm{cut}}\right) \times A_{i}\left(m_{D M}, M_{\mathrm{cut}}\right) \times \epsilon
$$

NOTE: the EFT has three parameters

1) m_{DM}
2) M_{*}
3) $M_{\text {cut }}$ (as physical as the other two)

ATLAS mono-jet recast

colored lines: fixed $M_{\text {cut }}$

Hard signal regions are favored at high cutoff (naive EFT)
But rapidly lose sensitivity: the cut makes distributions softer

ATLAS mono-jet recast

Theoretical connection among M_{*} and $M_{\text {cut }}$:

$$
M_{\mathrm{cut}}=g_{*} M_{*}
$$

estimated mediator coupling

ATLAS mono-jet recast

Theoretical connection among M_{*} and $M_{\text {cut }}$:

$$
\begin{gathered}
M_{\text {cut }}=g_{*} M_{*} \\
\downarrow \\
\text { estimated mediator coupling }
\end{gathered}
$$

Two justifications:

1) from examples: $\frac{1}{M_{*}^{2}}=\frac{g_{*}^{2}}{M_{\text {med }}^{2}}$

ATLAS mono-jet recast

Theoretical connection among M_{*} and $M_{\text {cut }}$:

$$
\begin{gathered}
M_{\text {cut }}=g_{*} M_{*} \\
\downarrow \\
\text { estimated mediator coupling }
\end{gathered}
$$

Two justifications:

1) from examples: $\frac{1}{M_{*}^{2}}=\frac{g_{*}^{2}}{M_{\text {med }}^{2}}$
2) from EFT matching: $\mathcal{M}(2 \rightarrow 2) \sim \frac{E^{2}}{M_{*}^{2}} \underset{\text { at cutoff }}{\rightarrow} \frac{M_{\text {cut }}^{2}}{M_{*}^{2}} \equiv g_{*}^{2}$

ATLAS mono-jet recast

Theoretical connection among M_{*} and $M_{\text {cut }}$:

$$
M_{\mathrm{cut}}=g_{*} M_{*}
$$

estimated mediator coupling
Two justifications:

1) from examples: $\frac{1}{M_{*}^{2}}=\frac{g_{*}^{2}}{M_{\text {med }}^{2}}$
2) from EFT matching: $\mathcal{M}(2 \rightarrow 2) \sim \frac{E^{2}}{M_{*}^{2}} \underset{\text { at cutoff }}{\rightarrow} \frac{M_{\text {cut }}^{2}}{M_{*}^{2}} \equiv g_{*}^{2}$

Useful redefinition: $\left\{\begin{array}{lc}\text { We know for sure that: } & g_{*}<4 \pi \\ \text { Expected for a WIMP: } & g_{*} \sim 1\end{array}\right.$

ATLAS mono-jet recast

Fixed g_{*} limits: (from all the SR)

ATLAS mono-jet recast

Fixed g_{*} limits: (from all the SR)

Similar plot in De Simone et. al 1402.1275. Comparison in backup.

Conclusions and Outlook

- Model-independent test of H-M DM is possible
- Parameter space currently far from fully tested progress needed in the soft region

Conclusions and Outlook

- Model-independent test of H-M DM is possible
- Parameter space currently far from fully tested progress needed in the soft region
- Towards the concrete implementation of the method [with M.Zanetti (CMS) and F.Pobbe]

1) define "hard scale" to be cut on. Using MLM matching 2) find optimal statistics for limits (shape an. with >0 th. errors?)

Conclusions and Outlook

- Model-independent test of H-M DM is possible
- Parameter space currently far from fully tested progress needed in the soft region
- Towards the concrete implementation of the method [with M.Zanetti (CMS) and F.Pobbe]

1) define "hard scale" to be cut on. Using MLM matching
2) find optimal statistics for limits (shape an. with >0 th. errors?)
-Beyond EFT's, the improvement is from mediator prod.:
3) turn to mediator search, appropriate interpretation is $\sigma \times B R$
4) other search channels for the mediator (e.g., model B is squark)
5) final goal is cover all models by patches (EFT + mediator search)

Backup

From De Simone et. al 1402.1275:

Conceptual difference: (to me...)
Their aim was show up to when naive EFT limits coincide with UV theory ones. Our aim is set limits that hold for any UV.
Practical differences:
Model-dependent cut variable Q_{tr}.
The contours are open! Issue due to Naive EFT limit rescaling.

Other variables

By further specifying mediator dynamics (s- or t-channel)
$Q_{\mathrm{tr}}=\max$ virtuality of mediator propagator

Model A: Z' coup. to q and DM

In all cases (kinematical bound):

Model B: squark-DM-quark coup.

$Q_{\mathrm{tr}}=\ldots$
$Q_{\mathrm{tr}}<E_{\mathrm{cm}}$

Other variables

Worth dedicated s-and t-channel analyses for a better bound?

We consider the improvement not sufficient

Other variables

Worth dedicated s- and t-channel analyses for a better bound?

We consider the improvement not sufficient

Simplified models reinterpretation

Properly set EFT limits hold in any microscopic theory. They are correct, but conservative.

Model A: Z' coup. to q and DM

$M_{*}=\frac{m_{Z^{\prime}}}{\sqrt{g_{q} g_{X}}}$

$g_{*}=\sqrt{g_{q} g_{X}}$

Model B: squark-DM-quark coup.

$M_{*}=\frac{2 \widetilde{m}}{g_{\mathrm{DM}}}$
$g_{*}=\frac{g_{\mathrm{DM}}}{2}$

Compute parameters, use EFT limits, obtain bounds.
Compare with direct recasting of mono-jet.

Simplified models reinterpretation

Model A: 95\% CL limit on M_{*}

Model A: 95\% CL limit on M_{*}

Lines for $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=1 / 8 \pi$ and $1 / 3$
Caution remark: most of these lines are inconsistent!

$$
\frac{\Gamma_{Z^{\prime}}}{m_{Z^{\prime}}}=\alpha g_{q}^{2}+\beta g_{X}^{2} \geq g_{q} g_{X} \sqrt{4 \alpha \beta}=\frac{m_{Z^{\prime}}^{2}}{M_{*}^{2}} \sqrt{4 \alpha \beta}
$$

Simplified models reinterpretation

Lines for $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=1 / 8 \pi$ and $1 / 3$
Caution remark: almost all of these lines are inconsistent! aside one point ...

Simplified models reinterpretation

Lines for $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=1 / 8 \pi$ and $1 / 3$
Notice: improvement due to resonant mediator production

