Strong tW scattering at the LHC

Ennio Salvioni UC Davis

HEFT 2015 University of Chicago November 5, 2015

based on work with Jeff Dror, Marco Farina and Javi Serra,

1511.xxxx

New Physics in the top sector

- Top quark has the largest coupling to the Higgs field, *y_t* Its role is prominent in models addressing the naturalness problem.
 Must have partners not too far above the weak scale.
- It is typically important in EWSB: large radiative contributions to Higgs potential

$$\begin{array}{ll} \text{Minimal SUSY} & \delta\lambda\sim\frac{3y_t^4}{16\pi^2}\log\frac{m_{\tilde{t}}^2}{m_t^2} & h \\ \text{Partial compositeness} & \delta\lambda\sim\frac{3y_{L,R}^2}{4\pi^2}\frac{m_T^2}{f^2} & t_L \underbrace{\begin{array}{c} y_L \\ y_L \\ \textbf{X} \end{array}}^{l} \underbrace{\begin{array}{c} y_R \\ y_R \\ \textbf{X} \end{array}}^{l} t_R \end{array}$$

 Similar to the Higgs, in a natural theory expect top properties to deviate from the SM.

Top electroweak couplings

$$\mathcal{L}_{t} = Z_{\mu} \bar{t} \gamma^{\mu} \left[c_{L} g_{L}^{\mathrm{SM}} P_{L} + c_{R} g_{R}^{\mathrm{SM}} P_{R} \right] t$$

+ $Z_{\mu} \bar{b} \gamma^{\mu} \left[c_{L}^{b} g_{L,b}^{\mathrm{SM}} P_{L} + c_{R}^{b} g_{R,b}^{\mathrm{SM}} P_{R} \right] b$
+ $g_{Wt_{L}b_{L}} W_{\mu}^{+} \bar{t} \gamma^{\mu} \left[c_{LL} P_{L} + c_{RR} P_{R} \right] b$ + h.c.
- $c_{t} \frac{m_{t}}{v} h \bar{t} t$

Current **direct** bounds:

For indirect bounds: Brod, Greljo, Stamou and Uttayarat, 2014; De Blas, Chala and Santiago, 2015

Top electroweak couplings

$$\mathcal{L}_{t} = Z_{\mu} \bar{t} \gamma^{\mu} [c_{L} g_{L}^{\mathrm{SM}} P_{L} + c_{R} g_{R}^{\mathrm{SM}} P_{R}] t$$

$$+ Z_{\mu} \bar{b} \gamma^{\mu} [c_{L}^{b} g_{L,b}^{\mathrm{SM}} P_{L} + c_{R}^{b} g_{R,b}^{\mathrm{SM}} P_{R}] b$$

$$+ g_{Wt_{L}b_{L}} W_{\mu}^{+} \bar{t} \gamma^{\mu} [c_{LL} P_{L} + c_{RR} P_{R}] b + \text{h.c.}$$

$$- c_{t} \frac{m_{t}}{v} h \bar{t} t$$

Current **direct** bounds:

Baur, Juste, Orr and Rainwater, 2004; Berger, Cao and Low, 2009; Roentsch and Schulze, 2014

> Bernardo et al. 2014 Buckley et al. 2015

- LEP, 0.1% and 1%
- Single top + *W* helicity fractions, ~ 10%
- *ttZ* and *tth* production, worse than 100%

Precision in ttZ limited to ~ 50/100% even at LHC 13 with 300 fb⁻¹

EFT for top couplings

$$Z_{\mu} \, \bar{t} \gamma^{\mu} \big[c_L \, g_L^{\rm SM} P_L + c_R \, g_R^{\rm SM} P_R \big] t$$

• If new physics is heavy, leading BSM effects parameterized by dim-6 operators. Those modifying *ttZ* couplings are $\bar{c} \lesssim \frac{g_*^2 v^2}{\Lambda^2} = \frac{v^2}{f^2}$

$$\frac{i\bar{c}_{L}^{(1)}}{v^{2}}H^{\dagger}\overleftrightarrow{D_{\mu}}H\bar{q}_{L}\gamma^{\mu}q_{L} + \frac{i\bar{c}_{L}^{(3)}}{v^{2}}H^{\dagger}\sigma^{a}\overleftrightarrow{D_{\mu}}H\bar{q}_{L}\gamma^{\mu}\sigma^{a}q_{L} + \frac{i\bar{c}_{R}}{v^{2}}H^{\dagger}\overleftrightarrow{D_{\mu}}H\bar{t}_{R}\gamma^{\mu}t_{R}$$

• They lead to

Pomarol and Serra, 2008

$$\delta c_{L} = \frac{\bar{c}_{L}^{(3)} - \bar{c}_{L}^{(1)}}{\left(1 - \frac{4}{3}s_{w}^{2}\right)}, \qquad \delta c_{R} = \frac{\bar{c}_{R}}{\frac{4}{3}s_{w}^{2}}, \qquad \delta c_{L}^{b} = \frac{\bar{c}_{L}^{(1)} + \bar{c}_{L}^{(3)}}{\left(1 - \frac{2}{3}s_{w}^{2}\right)}, \qquad \delta c_{LL} = \bar{c}_{L}^{(3)}$$
Giudice, Grojean, Pomarol and Rattazzi, 2007
$$\bar{c}_{L}^{(1)} + \bar{c}_{L}^{(3)} \simeq 0$$

EFT for top couplings

$$Z_{\mu} \,\bar{t} \gamma^{\mu} \big[c_L \, g_L^{\rm SM} P_L + c_R \, g_R^{\rm SM} P_R \big] t$$

• If new physics is heavy, leading BSM effects parameterized by dim-6 operators. Those modifying *ttZ* couplings are $\bar{c} \lesssim \frac{g_*^2 v^2}{\Lambda^2} = \frac{v^2}{f^2}$

$$\frac{i\bar{c}_L^{(1)}}{v^2}H^{\dagger}\overleftrightarrow{D_{\mu}}H\bar{q}_L\gamma^{\mu}q_L + \frac{i(-\bar{c}_L^{(1)})}{v^2}H^{\dagger}\sigma^a\overleftrightarrow{D_{\mu}}H\bar{q}_L\gamma^{\mu}\sigma^a q_L + \frac{i\bar{c}_R}{v^2}H^{\dagger}\overleftrightarrow{D_{\mu}}H\bar{t}_R\gamma^{\mu}t_R$$

• They lead to

$$\delta c_L = \frac{-2\,\bar{c}_L^{(1)}}{\left(1 - \frac{4}{3}s_w^2\right)}, \qquad \delta c_R = \frac{\bar{c}_R}{\frac{4}{3}s_w^2}, \qquad \delta c_L^b = 0, \qquad \delta c_{LL} = -\bar{c}_L^{(1)}$$

• Can be enforced by custodial parity.

Agashe, Contino, Da Rold and Pomarol, 2006

Probing top interactions

$$\frac{i\bar{c}_L^{(1)}}{v^2}H^{\dagger}\overleftrightarrow{D_{\mu}}H\bar{q}_L\gamma^{\mu}q_L + \frac{i(-\bar{c}_L^{(1)})}{v^2}H^{\dagger}\sigma^a\overleftrightarrow{D_{\mu}}H\bar{q}_L\gamma^{\mu}\sigma^aq_L + \frac{i\bar{c}_R}{v^2}H^{\dagger}\overleftrightarrow{D_{\mu}}H\bar{t}_R\gamma^{\mu}t_R$$

 At low energies, they give rise to coupling modifications

- At high energies, 2 → 2 amplitudes that grow like energy (squared)
- Analogy with WW scattering

Chanowitz and Gaillard, 1985 Contino, Grojean, Moretti, Piccinini and Rattazzi, 2010

Coefficients of amplitudes that grow with energy:

Ztt couplings,
$$\begin{cases} A_{LL} = -c_{LL}^2 + c_L - \frac{4}{3}s_w^2(c_L - 1), \\ A_{RR} = -c_{RR}^2 - \frac{4}{3}s_w^2(c_R - 1), \\ A_{LR} = A_{RL} = \frac{1}{2}\left[(c_L - c_t c_V) - \frac{4}{3}s_w^2(c_L + c_R - 2)\right] \end{cases}$$

• Coefficients of amplitudes that grow with energy:

$$\begin{aligned} & \textbf{Ztt couplings,} \quad \left\{ \begin{array}{l} A_{LL} &= -c_{LL}^2 + c_L - \frac{4}{3}s_w^2(c_L - 1) \,, \\ & \textbf{grow like} \\ & \hat{\textbf{s}}/\textbf{v^2} \\ & \hat{\textbf{s}}/\textbf{v^2} \\ & A_{LR} &= A_{RL} = \frac{1}{2} \left[(c_L - c_t c_V) - \frac{4}{3}s_w^2(c_L + c_R - 2) \right] \\ & \textbf{Appelquist and Chanowitz, 1987} \\ \end{aligned} \right. \end{aligned} \\ \begin{aligned} & \textbf{Higgs couplings, grow like} \quad m_t \sqrt{\hat{s}}/v^2 \end{aligned}$$

Partonic cross section

tW scattering at the LHC

• Hadronic process is $pp \to t\bar{t}W + j$

picked up by $tar{t}W$ searches in same-sign leptons

• CMS cut-and-count search easy to recast. CMS, 1406.7830 Our signal is at $O(g_s g_w^3)$, instead CMS only considered

this is our main background

8 TeV bounds

Better than the conventional strategy, without any optimization!

8 TeV bounds

Better than the conventional strategy, without any optimization!

13 TeV dedicated analysis

Main backgrounds (validated at 8 TeV):

- $(t\bar{t}W+jets)_{QCD}$
- 'Mis-identified' leptons from $t\bar{t}+ ext{jets}$

Exploit signal features:

tW system with large invariant mass

forward jet

13 TeV dedicated analysis

Main backgrounds (validated at 8 TeV):

- $(t\bar{t}W + jets)_{QCD}$
- 'Mis-identified' leptons from $t\bar{t}$ +jets

Exploit signal features:

0

tW system with large invariant mass

forward jet

		S	EW(SM)	$\mathrm{EW}(\Delta_R = 1)$	$(t\bar{t}W+jets)_{QCD}$	misIDℓ	S/B
ptimized cuts	pre-selection	2.9	91	183	445	414	0.097
	$p_T^{\ell_1} > 100 \mathrm{GeV}$	3.1	44	111	223	144	0.16
	$m_{\ell_1\ell_2} > 125~{\rm GeV}$	3.2	39	102	202	79	0.20
	MET > 50 GeV	3.3	28	84	152	64	0.23
	$ \eta_{j_{\rm fw}} > 1.75$	3.5	21	69	77	44	0.34
	$\Delta \eta > 2$	3.6	20	67	60	40	0.39
	$S_T > 500 \text{ GeV}$	3.6	16	58	51	27	0.45

Table 5: Cut-flow for the 4*j* optimization at 13 TeV. EW stands for $(t\bar{t}Wj)_{\rm EW}$.

13 TeV bounds

 $-0.30 < \bar{c}_R < 0.28$

50% syst. unc. on misID-lepton bkg.

• $t\overline{t}Z$ projection taken from **Roentsch and Schulze**, 1404.1005 (NLO, signal only)

13 TeV bounds

 $-0.30 < \bar{c}_R < 0.28$

50% syst. unc. on misID-lepton bkg.

 $t\bar{t}W$ production as sensitive as $t\bar{t}Z$ (or more!) to top-Z couplings

Other applications/1

• $bW \rightarrow tZ$?

probed in tZj, large cross section

Campbell, Ellis and Roentsch, 2013 Roentsch and Schulze, 2014

Other applications/1

• $bW \rightarrow tZ$?

probed in tZj, large cross section

however, **no** sensitivity to Zt_Rt_R

Other applications/2

• $tZ \rightarrow th$?

probed in $t\bar{t}hj$

Interplay with

Summary

High energy scattering of *t* and *W*, *Z*, *h* is a different approach to test top EW couplings.
 Analogy to *WW* scattering.

• Several other processes are worth exploring.

. . .

Ex. $tZ \rightarrow th$: combined test of Zt_Rt_R and htt

Perturbative unitarity

13 TeV analysis, 4j

13 TeV analysis, 3j

 Forward jet tagging performance at high pileup is not trivial.
 Do also 'conservative' analysis with only central jets (same pre-selection as 8 TeV). Very robust

