Tuning Cavity Arrays with Non-Linear Dielectrics

Andrew Sonnenschein Fermilab

8/27/2015

Slow Progress Towards Cavity Arrays

- Arrays of up to 1000 cavities proposed 25 years ago or more.
- Largest prototype system used 4 cavities (Kinion, 2004)
- Al experiments done to-date used only a single cavity.

From "A Proposed Search for Dark Matter Axions in the 0.6-16 μeV Range", K. van Bibber et al., 1991.

Number of cavities	Arrangement	Tuning Range MHz	T _n K	Q_w	<u>1 df</u> J di %/wk	Time weeks	
1	0	148-233	6	530000	1.3	3 6	
2	θ	233–3 25	6	370 000	1.4	2 3	
4	Ð	325-488	6	3 00000	1.9	24	
8	O×8	488-770	5	2 80000	1.8	2 7	
16	⊖×8	770-1070	5	190000	1.9	17	
3 2	⊕×8	1070-1350	5	160 000	2.1	11	
128	$\circ \times 64 \times 2$	1350–18 80	6	15000 0	2.0	16	
512	$\circ \times 128 \times 4$	1880–2 620	7	1300 00	1.8	18	
1024	$\circ \times 256 \times 4$	2 620 –3 900	9	100000	1.7	24	

Table II. Search rate of the proposed experiment. Rate and time estimates were made with under the condition that a DFSZ axion would be seen with (s/n) = 4, and presumes the intrinsic cavity quality factors and effective total noise temperatures as shown.

Why Such Slow Progress?

- Tuning mechanisms for multiple cavities are mechanically complex, space in cryostat is limited.
- Power budget is very limited at mK temperatures.
- Cryogenic piezo mechanisms seem to have performance and reliability problems.
- ...?

Tuning Multiple Cavities with A Single Mechanical Motion

- Idea: Tune many cavities to a common frequency with a single mechanical degree of freedom. Only 1 piezo actuator for entire array.
- Problem: cavities will all be at slightly different frequencies due to mechanical inaccuracies.
- We need some way to "trim" the cavities so they are all at the same frequency, at the level of a few parts per million for $Q\sim 10^5$

Tunable Dielectrics

• In the limit where backreaction of an inserted dielectric object on fields is small, change in cavity frequency is simply:

$$\frac{\omega - \omega_0}{\omega_0} \simeq \frac{-\int_{V_0} (\Delta \epsilon |\bar{E}_0|^2 + \Delta \mu |\bar{H}_0|^2) dv}{\int_{V_0} (\epsilon |\bar{E}_0|^2 + \mu |\bar{H}_0|^2) dv}$$

- Frequency change is proportional to change in dielectric constant.
- With non-linear dielectric response, effective small signal AC dielectric constant is affected by a DC field.

Tunable Dielectrics

Strontium Titanate (STO) Field- Dependent Dielectric Constant at Low Temperature

Vendik et al., 1999.

Strontium Titanate Dielectric Losses at 10 GHz

Vendik et al., 1999.

• Intrinsic Q factor is $1/\tan \delta \sim 250$ below 4 K.

Figure of Merit for Tunable Dielectrics

Figure of Merit K = Tunability*Q = $(\varepsilon_{v0}-\varepsilon_{v1})/\varepsilon_0 \tan \delta$, where ε_{v0} is zero field dielectric constant and ε_{v1} is in maximum bias field.

- For strontium titanate at cryogenic temperatures and GHz frequencies, K≈200
- With a partially filled resonator, it's possible to adjust tunability and Q as long as the product K remains constant
 - For example, K=10⁻³ *10⁵=100
 - It should be possible to build a resonator with $10^{\text{-3}}$ tunability and Q– 10^{5}

Electronic Fine Tuning With Nonlinear Dielectrics

COMSOL Simulations

- Studied tuning effect of dielectric film on a cylindrical quartz substrate.
- Tuning depends on film thickness, dielectric constant and radial position.
- For typical STO amorphous film properties, thickness will need to be ~ 1 micron and gap to wall ~ 1 mm.

Fermilab LDRD Proposal 2015

In collaboration with Daniel Bowring (Fermilab, Accelerator Division) and Shashank Priya (Virginia Tech, Dept of Mechanical Engineering)

- Measure tunability and loss tangent of dielectric samples in fields up to 10 Tesla at 2 K, using coplanar resonator technique. Materials to explore: Ba(Zr_xTi_{1-x})O₃ and (Sr,Bi)TiO₃ Films will be deposited on quartz substrates at Virginia Tech.
- 2. Test tuning of 4 GHz cavity with BST dielectric at room temperature. Goal is to demonstrate 0.1% tuning without significant deterioration of Q.
- 3. Test cavity tuning at 2 K using optimized film.

Fermilab Test Facility for Conductor and Inserts

	Oxford Teslatron #1	Oxford Teslatron #2	Oxford Teslatron #3	Oxford Teslatron #4
Bz_max	15 T (4.2K) 17 T (2.2K)	14 T (4.2K) 16 T (2.2K)	Not equipped with solenoid for external field generation.	8.5 T (4.2K) 10 T (2.2K)
External Nb3Sn/ NbTi Fully SC Magnet Geometry	Cold Bore: 68 mm OD: 192 mm Height: 167 mm	Cold Bore: 77mm OD: 218mm Height: 180mm	Max Magnet OD: 253 mm (accommodates <u>up to 4 DP helical</u> <u>units</u>)	Cold Bore: 147 mm OD: 224 mm Height: 240 mm

2 kA power supply (5 kA on order), data acquisition for quench monitoring and cryogenic monitoring

Other R&D Topics

- Tuning large arrays of cavities would be easy if we could achieve mechanical precision at the level of 1/Q~10⁻⁵~(1 micron/ 10 cm). This may or may not be possible.
- R&D to investigate limits of mechanical precision would be useful.
- If the necessary degree of mechanical precision is impossible, common mechanical coarse tuning could be combined with electronic fine tuning of individual cavities. A modest degree of fine tuning would be required ~0.1% at the most.
- Possible fine tuning mechanisms:
 - Tunable dielectric films
 - Varactor-loaded cavities
 - Feedback
 - Short stroke piezo actuators
 - Others?