SEARCHING FOR HIDDEN PHOTONS with axion-search technology

Jeremy Mardon Stanford Institute for Theoretical Physics

KEY POINTS

"Hidden Photons" (a.k.a. dark photons, paraphotons) are a possible 5th-force carrier and dark-matter candidate

Experimental searches are extremely similar to axion searches

... but are **easier** because:

i) No static B-field needed

ii) stellar cooling constraints are weaker

HIDDEN PHOTONS

THEORY:

a **5th force**: a **copy of Electromagnetism**, but with

- small hidden-photon mass (= finite range)
- small coupling ε (the "kinetic mixing" parameter)

HIDDEN PHOTON CONSTRAINTS

LIGHT-THROUGH-WALLS SEARCHES FOR HIDDEN PHOTONS

LIGHT-THROUGH-WALLS CAVITY SEARCH

The hidden photon is an unshieldable addition to Electromagnetism

- tune 2 cavities to same frequency

- drive one cavity, pick up signal in well-shielded 2nd cavity
- large resonant enhancement (up to $Q \sim 10^{10}$?)

Early-stage experiments: Povey et al 1003.0964

ADMX 1007.3766

CROWS 1310,8098

REACH

– large potential reach

- corresponding axion search is weak ($g_{a\gamma\gamma} < 10^{-7} \text{GeV}$)
- longitudinal mode is important in optimizing setup

1407.4806

1310.8098

SEARCHING FOR HIDDEN PHOTON DARK MATTER

HIDDEN PHOTONS AS DARK MATTER

Pospelov Ritz & Voloshin 0807.3279 Nelson & Scholtz 1105.2812

HIDDEN PHOTON DM: RESONANT SEARCHES

A "hidden electric field" that penetrates shielding $-E' \approx \sqrt{\rho_{\text{DM}}} \approx 2000 \text{ V/m}$

Has fixed frequency $-\omega = m_{\gamma'}, \ \delta \omega / \omega = 10^{-6}$

Can excite an electromagnetic resonator

electromagnetic cavities

ADMX is automatically sensitive

Redondo et al 1201.5902

HIDDEN PHOTON DM: RESONANT SEARCHES

HIDDEN PHOTON DM: RESONANT SEARCHES

A "hidden electric field" that penetrates shielding $-E' \approx \sqrt{\rho_{\text{DM}}} \approx 2000 \text{ V/m}$

Has fixed frequency $-\omega = m_{\gamma'}, \ \delta \omega / \omega = 10^{-6}$

Can excite an electromagnetic resonator

electromagnetic cavities

- ADMX is automatically sensitive Redondo et al 1201.5902

LC circuits

— much wider and lower frequency range than cavities

DM RADIO: A TUNABLE LC-CIRCUIT FOR HIDDEN-PHOTON DARK MATTER

"A Radio for Hidden-Photon Dark Matter Detection" Saptarshi Chaudhuri, Peter Graham, Kent Irwin, J. M., Surjeet Rajendran & Yue Zhao arXiv:1411.7382

EXPERIMENTAL SETUP

Metal box to shield backgrounds

Tunable resonant LC circuit Read out with SQUID

THE SIGNAL INSIDE A SHIELD

THE DM RADIO COLLABORATION

Experiment

Kent Irwin (PI) Saptarshi Chaudhuri Dale Li Christopher Williams Betty Young Max Silva-Feaver Sarah Stokes Kernasovkiy

Theory

Peter Graham Jeremy Mardon Surjeet Rajendran Yue Zhao

University

REACH

PHASES I & 2 (funded) size ~ 350ml — 1m Q~10⁶ T~4K, thermal noise limited

FULL DESIGNsize ~ 1mQ~106T~0.1K, thermal noise limited

CONCLUSIONS

Axion search methods easily probe hidden photons

If B-fields are a problem... a hidden-photon search gives **real science reach without static B-field**

Cavity-to-cavity light-through-walls experiments could be very powerful

Hidden-photon **dark matter search with LC resonator** has huge reach (upcoming at Stanford)

key refs: 1201.5902, 1407.4806, 1411.7382

CONFIRMING A SIGNAL

Excellent cross-checks are possible:

- orientation dependence is characteristic of vector
- phase and directional coherence over ~1000 wavelengths
- --- could map out phase and direction over time

PRODUCTION SUMMARY

Jeremy Mardon, SITP, Stanford

DETECTION SUMMARY

