

Basic cavity is a right circular cylinder

$$f = \frac{c}{2.61r}$$
Or:

$$\frac{r}{1 \text{ cm}} = \frac{11.5 \text{ GHz}}{f}$$

For ADMX,

$$r = 21 \text{ cm}$$

$$\Rightarrow f = 550 \text{ MHz}$$
$$L = 100 \text{ cm}$$

"Sweet spot" is ~ 4-5 GHz

• Power from the cavity is

$$P = 4 \cdot 10^{-22} \text{ W} \left(\frac{V}{200 \ \ell}\right) \left(\frac{B_0}{8 \text{ Tesla}}\right)^2 C_{nl} \left(\frac{g_{\gamma}}{0.97}\right)^2 \cdot \left(\frac{\rho_{\rm a}}{0.5 \cdot 10^{-24} \text{ g/cm}^3}\right) \left(\frac{m_{\rm a}}{1 \text{ GHz}}\right) \left(\frac{\min(Q_{\rm L}, Q_{\rm a})}{1 \times 10^5}\right)$$

- Where C is form factor, $\rho_{\rm a}$ is the halo density, $m_{\rm a}$ the axion mass, and
- $Q_{\rm L} \sim 70000 ({\rm GHz}/f)^{2/3}$ (ASE); $Q_a \sim 10^6$ are quality factors
- $g_{\gamma} \sim 0.97$ (KSVZ); $g_{\gamma} \sim 0.36$ (DFSZ) are coupling strengths
- We use DFSZ; look for ~10⁻²² Watts power

Baseline is a right circular cylinder

$$f = \frac{c}{2.61r}$$
Or:

$$\frac{r}{1 \text{ cm}} = \frac{11.5 \text{ GHz}}{f}$$

For Sweet Spot,

$$r = 2.6 \text{ cm}$$

 $\Rightarrow f = 4.5 \text{ GHz}$
 $L = 5.6 \text{ cm}$

In ADMX magnet, need up to 32 cavities

Cover about 1 decade in axion mass

Cavities		Tuned		Pack	Res.	Tuning	Tuning	Q	Ρ	<u>1 df</u>	Run
No.	Туре	by	r/R	factr	freq.	range	range	wall	W	f dt	time
					MHz	MHz	ueV		*e-22	%/wk	Wks
1	0	dielec	1.00	1.00	575	402 - 575	1.7 - 2.4	246000	4	3.6	8
1	0	metal	1.00	1.00	575	575 - 908	2.4 - 3.8	223000	4	3.3	18
2	()	metal	1.00	1.00	897	897 - 1417	3.7 - 5.9	154000	4	3.5	16
4	(+)	metal	1.00	1.00	1207	1207 - 1907	5 - 7.9	127000	4	3.9	15
8	O *8	metal	.303	.733	1899	1899 - 3001	7.8 - 12	119000	5	3.1	19
16	() *8	metal	.303	.733	2959	2959 - 4675	12 - 19	81000	5	3.3	18
32	(+) *8	metal	.303	.733	3983	3983 - 6293	16 - 26	67000	5	3.7	16

Cavities must be added in phase

Requires them to have identical resonances

- Tune (dead reckoning), measure, adjust...
- Use a servomechanism

Requires them to have identical resonances

- Tune (dead reckoning), measure, adjust...
- Use a servomechanism
- Need a method to bring all resonances to a common frequency
- Method: Pound, Drever, Hall (PDH) reflection locking
- Used by LIGO, VIRGO and other gravity experiments

PDH references

- Electronic Frequency Stabilization of Microwave Oscillators R.V. Pound, Rev. Sci. Instrum. 17, 490 (1946).
- Laser phase and frequency stabilization using an optical resonator R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, and H. Ward, Appl. Phys. B31, 97-105 (1983).
- An introduction to Pound–Drever–Hall laser frequency stabilization Eric D. Black, Am. J. Phys. 69, 79 (2001).
- Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment
 C.E. Liekhus-Schmaltz and J.D.D. Martin, Am. J. Phys. 80, 232 (2012).

Pound Drever-Hall (PDH) reflection locking

- Cavity reflects (promptly) waves that are not on resonance
- Reflection dip at resonance, along with phase change

Phase-modulated light

• Phase modulated light

$$E = e^{-i\omega t} + i\Gamma \cos \Omega t + im]$$

$$= e^{-i\omega t} [1 + i\Gamma \cos \Omega t + im]$$

$$= e^{-i\omega t} + \frac{i\Gamma}{2}e^{-i(\omega + \Omega)t} + i\frac{\Gamma}{2}e^{-i(\omega - \Omega)t}$$

W-R W W+R

As cavity tunes, phase of reflected carrier shifts

Simulated PDH signal

Each cavity can be driven to resonance at the carrier

