Magnetic Field Limits of Superconducting RF Cavities

Sam Posen
Associate Scientist, FNAL Technical Division

Workshop on Microwave Cavity Design for Axion Detection
August 26, 2015

Some images from linearcollider.org
Superconducting RF Cavities

- Muscle of many large particle accelerators
- RF input power → accelerating electric field

Image from linear collider.org
• SRF cavity: high quality EM resonator
• Particle beam gains energy as it passes through

Input RF power at 1.3 GHz

Slowed down by factor of approximately 4×10^9

• Electric field provides acceleration
• Magnetic field can’t be avoided
• How high in field can we take SRF cavities?
• State of the art niobium cavities are limited by peak surface magnetic field
• For relatively small applied magnetic fields, superconductors expel flux: **Meissner state**

• At higher fields, Type II superconductors allow flux to enter in packets: **Vortex state**

Images from Wikipedia and Rose-Innes and Roderick, Introduction to Superconductivity
For relatively small applied magnetic fields, superconductors expel flux: **Meissner state**

Avoid flux penetration.

At RF frequencies → **excessive heating** state

Images from Wikipedia and Rose-Innes and Roderick, Introduction to Superconductivity
Superheating Field

- Flux free Meissner state is stable up to H_{c1}
- Favorable for flux to be deep in bulk above H_{c1}
- BUT surface energy barrier allows metastable state!
Why a superheating field?

\[\lambda: \text{B-field decay constant} \]

\[\xi: \text{Cooper pair interaction distance} \]

Energy cost: creation of normal conducting vortex core

Energy benefit: flux from high magnetic field region into low magnetic field region

Costly core \(\xi \) enters first; gain from field \(\lambda \) later

Slide adapted from J. P. Sethna
• **NbTi** (magnet quality):
 • Lots of pinning centers – $H_{c2} \sim 15$ T
 • $T_c \sim 9$-10 K, ductile

• **Niobium** (SRF quality):
 • Robust barrier to magnetic flux – $H_{sh} \sim 0.2$ T
 • $T_c \sim 9$ K, ductile

• **Nb$_3$Sn** (can be either!):
 • Can be made with pinning centers – $H_{c2} \sim 30$ T
 • Predicted robust barrier to flux – $H_{sh} \sim 0.4$ T?
 • $T_c \sim 18$ K, brittle
• Used in accelerators: Pb and Nb, either bulk or sputtered
• Many film deposition methods researched: ECR, ALD, CVD, HPCVD, MOCVD, HiPIMS, e-beam, thermal vapor diffusion, liquid diffusion, co-sputtering+annealing, cathodic arc deposition
• Many alternative superconductors considered
Experimental Properties of Promising Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>$\lambda(0)$ [nm]</th>
<th>$\xi(0)$ [nm]</th>
<th>B_{sh} [mT]</th>
<th>T_c [K]</th>
<th>$\rho_n(0)$ [µΩcm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb</td>
<td>50</td>
<td>22</td>
<td>210</td>
<td>9.2</td>
<td>2</td>
</tr>
<tr>
<td>Nb$_3$Sn</td>
<td>111</td>
<td>4.2</td>
<td>410</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>MgB$_2$</td>
<td>185</td>
<td>4.9</td>
<td>210</td>
<td>40</td>
<td>0.1</td>
</tr>
<tr>
<td>NbN</td>
<td>375</td>
<td>2.9</td>
<td>160</td>
<td>16</td>
<td>144</td>
</tr>
</tbody>
</table>

Parameters for: Nb from [1] assuming RRR = 10; Nb$_3$Sn from [2]; NbN from [3]; MgB$_2$ from [4] and [5]. B_{sh} for Nb found from equation in [6] and for others calculated from [7]. B_c used to calculated B_{sh} found from [8] eq. 4.20.

Material parameters vary with fabrication. References were chosen to try to display realistic properties for polycrystalline films.
• Alternative geometries considered, including **multilayer SIS’ films** studied in depth
• No significant increase predicted for maximum flux-free field [Posen et al. 2013, Kubo et al. 2013, Gurevich 2015]

Images adapted from A. Gurevich, APL 012511 (2006)
Pulsed Quench Field

Radio Frequency Magnetic Field Limits of Nb and Nb$_3$Sn
See Nick Valles’s thesis, Cornell University, 2014
DC Flux Penetration

See Nick Valles’s thesis, Cornell University, 2014
Before $B_{DC} = 0 \text{ T}$

- Quality Factor: 1.351×10^8
- Eacc [MV/m]: 4.23
- Beta_R: 0.514
- Beta_E: 0.525

After $B_{DC} = 0.3 \text{ T}$

- Quality Factor: 9.908×10^6
- Eacc [MV/m]: 1.07
- Beta_R: 0.899
- Beta_E: 0.743

Raw data measured by Nick Valles, Cornell University, 2013
• Realistic expectation: $B_{\text{max}} \sim 0.2 \, \text{T}$ at walls of superconducting cavity to maintain high Q_0

• Alternative materials may increase limit up to $0.5 \, \text{T}$ with a few years of development
• Poloidal field coils
• Large field in cavity interior
• Smaller field at walls