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}  ClusterFinder/LineCluster_module - update 
}  RecoAlg/ClusterCrawlerAlg - update 
}  TrackFinder/CCTrackMaker_module – major update 
}  RecoAlg/TrackTrajectoryAlg - update 
}  RecoAlg/VertexFitAlg – new 

}  Much of this information is for reference and will not be 
described in detail 

}  Highlights for this meeting in red 
 



LineCluster_module 
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}  Calls ClusterCrawlerAlg 
}  Produces 

}  Interface is unchanged 

ß “New” 

ß “New” 



ClusterCrawlerAlg Updates 
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}  Vertex finding & fitting 
}  Hammer clusters new 
}  ChkSignal revision 
}  MergeOverlap new – merges overlapping clusters 



ClusterCrawlerAlg - 2D Vertex Finding 
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}  Algorithm (old) 
}  Double loop over cluster pairs that have no Vtx assignment 
}  Calculate (vwire, vtick) of the intersection point 
}  Ensure that there is hit charge on all wires between (vwire, vtick) and 

the Begin/End (wire, tick) of both clusters (using ChkSignal) 
}  Compare (vwire, vtick)  with set of existing vertices and merge them if 
δWire < 4 and δTick < 25 

}  Problem 
}  Poor cluster reconstruction near the vertex can result in nearby 

vertices that fail the cuts particularly for large angle clusters 
}  Solution 

}  Modify FitVtx routine to save the vertex position error 
}  Replace the hard-coded δWire and δTick cuts with chisq cuts 

}  Side note: recob::Vertex has no error on the (x,y,z) position 
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2 GeV CC neutrino interaction w 6 protons 
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Vertex position 
(small open circle) 
after making these 

changes 
6 clusters 

7 clusters 

6 clusters 
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Hammer clusters 

No circle displayed à no vertex found 
Zoom in on next slide 
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Short clusters not 
reconstructed 

Similar signature to 
ArgoNeuT back-to-
back proton tracks 

2 clusters 

2 clusters 

1 cluster 



ClusterCrawlerAlg  
New routine - FindHammerClusters 
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}  In each plane, look for: 
}  One long (>20 hits) cluster whose End is near a short (< 20 hits) 

cluster 
}  An (vwire, vtick) intersection point on the short cluster where vwire < 

End wire of the long cluster 
}  Calculate the X position of the intersection point 
}  Store in a temporary struct 

}  Match in 3D 
}  Create an “incomplete” 3D vertex (i.e. 2/3 planes match) if: 

}  The X position of hammer clusters are < fVertex3Dcut 
}  X, Y, Z position of the matched 2D vertices is within the TPC 
}  Split the short clusters in the two matching planes 
}  Create 2D vertices in the two matching planes and assign the short and 

long clusters to them 
}  Use existing Vtx3ClusterSplit routine to try to “complete” the 

3D vertex  in the third plane 
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Results 



ClusterCrawlerAlg  
ChkSignal  reminder 
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}  Returns true if there is a “wire signal” between (wire1, tick1) 
and (wire2, tick2) (red line in the figure) 
}  Original (pre-LArSoft) version checked wire ADC values 

}  Not available when wire signals were dropped from the event 
}  Converted to check proximity of hits (PeakTimeMinusRMS, 

PeakTimePlusRMS) to the expected tick à OLD 

Clusters were inappropriately merged 
(red line) with the existing code. Fixed 
with the changes described à 



ClusterCrawlerAlg  
ChkSignal revision 
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}  Correct method is to require that the wire signal 
amplitude on each wire along the line between (wire1, 
tick1) - (wire2, tick2) > expected wire signal (t) 

}  Requires calculating the hit amplitude A(t) = 
PeakAmplitude * exp (-0.5 * (t - PeakTime)2 / RMS) 
}  Or use a Gaussian histogram to speed things up 

}  New fcl parameter MinAmp (= 10 for uB) for the 
minimum wire signal amplitude 



MergeOverlap 
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}  Poorly reconstructed (broken) clusters may overlap each 
other – especially cosmic rays 

}  Merge clusters using fit information just outside of the 
overlap region to select hits within the overlap region 
}  Also merge hits in the overlap region if the charge of merged 

hits is consistent with charge of hits outside the overlap region 

Overlap 

region 



ClusterCrawlerAlg  
Code Development Output Improvements 
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à  recob:EndPoint2D’s 
à  recob::EndPoint2D’s 
à  recob::Vertex 
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New 

New 
Old hard cut (cm) 

Modified fcl file 



CCTrackMaker_module 
Algorithm 
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}  Associate ends of broken clusters 
}  Simplified scheme using “cluster chains” à 

}  Two 3D cluster matching routines 
}  VtxMatch uses clusters associated with 3D vertices found by ClusterCrawler 

}  Match clusters that start(end) at the same vertex 
}  PlnMatch matches clusters using cluster end point information 

}  Several passes – long clusters, short clusters, etc à 
}  AngMatch matches clusters preferentially by angle 

}  Both use FillEndMatch which finds a match error for 2 or 3 clusters  at the 
“match end” (e.g. a common vertex or similar X) and the “other end” of 
the clusters 

}  Wire[end], X[end], Angle[end] where end = 0 (US), 1 (DS) 
}  Matching σ from fcl file: XMatchErr,  AngleMatchErr 
}  Match error ~ chgAsym * sqrt(δX2/σX

2 + δA2/σX
2 + δW2/σW

2 ) 
¨  chgAsym = 1 +  (BigChg – SmallChg) / (BigChg + SmallChg) 

}  Put results into a vector of match structs 

New 

New 
New 



CCTrackMaker_module 
MakeClusterChains merges Broken Clusters 
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}  ClusterCrawler cluster hits are naturally ordered by increasing 
wire number 
}  Cluster “End” = 0 (US end, low wire num), 1 (DS End high wire num) 

}  Define a cluster Order for inserting in a trkHits vector 
}  Consistent hit ordering between planes 
}  Default Order = 0 (hits loaded by increasing wire number) 

 
ClsIndex:Order =  0:0 3:0 4:0 

0:W0:T0  0:W1:T1  3:W0:T0  3:W1:T1  4:W0:T0  

4:W1:T1  

Cluster chain composed of ClsIndex:Order = (0:0 3:0 4:0)  

Wire 

T
im

e 



CCTrackMaker_module 
Merging Wandering Clusters 
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}  Cluster matching between planes loops over both ends of all 
clusters so the sequential ordering of clusters in the chain is 
irrelevant but the hit order is 
}  Need ClsIndex:Order = (0:0 3:0 4:1) or (4:0 3:1 0:1) 

0:0  
3:0 

4:0  

Hit ordering in a track. 
Either is OK 

Until you match clusters between planes 
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0:0 

2:0 
3:0 

1:0 Need cluster chain = (1:1 0:0 2:0)  
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Cluster chain 

Cluster chain 

Cluster chain 

Match end 

Other end 

Match end 

Match end 

Other end 

Other end 

Broken clusters 



CCTrackMaker_module 
Matching between planes 
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}  SortMatches 
}  Sort by increasing (Err + oErr) 
}  Make tracks starting with the best cluster match combination, 

ignoring the ones that have already-used clusters 
}  This fails if the correct match is ε > an incorrect match à not resilient 

à Potential 3D track 



CCTrackMaker_module 
SortMatches - New 
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}  Method: Find the set of cluster matching combinations that has 
the lowest total matching error for ALL clusters in the event 
with the fewest number of tracks (matches) 

}  Find the total length of all clusters (not used in a track) in all 
planes in the matcomb vector (matcombTotLen) 
}  VtxMatch: total length of all clusters associated with a vertex 
}  PlnMatch: total length of all clusters in the TPC 

}  Double loop over match combinations, starting with the best 
}  After the first loop, find the total length of all clusters used (totLen) 
}  Stop looping if fracLen = totLen / matcombTotLen > 99.9% 
}  Calculate a total error = Σ(match errors) * Σ (matches) / fracLen 
}  Make tracks using match combinations with the best total error 



CCTrackMaker_module 
Code Development Output 
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Match end Other end Cluster chain indices 



CCTrackMaker_module 
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}  Produces 

}  PFParticle convention 
}  Neutrino PDGCode = 14 
}  Neutrino Primary particles PDGCode = 2212 
}  Neutrino Secondary particles PDGCode = 211 
}  Cosmic rays PDGCode = 13 

}  No attempt to associate delta-rays with muons 
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Match end matching 

Q = Cluster charge in planes 0, 1, (2) 
Qmax = max cluster Q in 2(3) planes 
Qmin = min cluster Q in 2(3) plane 
 
Asym = 1 + (Qmax – Qmin) / (Qmax + Qmin) 

Δθ using ThirdPlaneSlope   ΔWire using IntersectionPoint   

χ2/DOF 



TrackTrajectoryAlg - Update 
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}  Reminder:  
}  Finds a 3D trajectory using an ordered collection of hits in two or three 

planes 
}  Method: Fit sub-collections of hits at similar X positions using 

TrackLineFitAlg to create trajectory points 
}  Intended to be a simpler, faster alternative to Kalman fit module 

}  Problems with the current version 
}  Failed too often 
}  Flawed implementation for using the hit charge in lieu of X to create 

trajectory points 
}  New 

}  Abandon charge method 
}  Use a simpler scheme for making sub-collections 
}  ShortTrackTrajectory finds trajectory endpoints for short tracks or if a 

failure occurs in the main algorithm 
}  Breaking change to interface 
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Notes 
Black line: 2D projection of 3D trajectory 
Hits associated with have the same color 
tracks in each view  

TrackTrajectoryAlg in 
CCTrackMaker 
 
HitErrFac = 0.2 
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TrackTrajectoryAlg in 
CCTrackMaker 
 
HitErrFac = 0.4 



VertexFitAlg - New 
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}  Inputs 
}  Calling routine reconstructs 3D tracks from hits in 2(3) planes 

}  Passes a subset of the track hit collection to VertexFixAlg:  WireID, X, X 
error 

}  Information put in a global struct so that TMinuit can see it à 
}  Outputs 

}  Vertex position + errors 
}  Fitted track direction vectors + errors 
}  Chisq/DOF 



VertexFitMinuitStruct.h 
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34 



Summary 
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}  Testing done on a mac using v04_15_00 mavericks 
distribution 

}  Further improvements 
}  Request feedback from users 
}  Matching shower-like clusters in CCTrackMaker 


