
Reco Changes

Bruce Baller
July 14, 2015

Outline

2

}  ClusterFinder/LineCluster_module - update
}  RecoAlg/ClusterCrawlerAlg - update
}  TrackFinder/CCTrackMaker_module – major update
}  RecoAlg/TrackTrajectoryAlg - update
}  RecoAlg/VertexFitAlg – new

}  Much of this information is for reference and will not be
described in detail

}  Highlights for this meeting in red

LineCluster_module

3

}  Calls ClusterCrawlerAlg
}  Produces

}  Interface is unchanged

ß “New”

ß “New”

ClusterCrawlerAlg Updates

4

}  Vertex finding & fitting
}  Hammer clusters new
}  ChkSignal revision
}  MergeOverlap new – merges overlapping clusters

ClusterCrawlerAlg - 2D Vertex Finding

5

}  Algorithm (old)
}  Double loop over cluster pairs that have no Vtx assignment
}  Calculate (vwire, vtick) of the intersection point
}  Ensure that there is hit charge on all wires between (vwire, vtick) and

the Begin/End (wire, tick) of both clusters (using ChkSignal)
}  Compare (vwire, vtick) with set of existing vertices and merge them if
δWire < 4 and δTick < 25

}  Problem
}  Poor cluster reconstruction near the vertex can result in nearby

vertices that fail the cuts particularly for large angle clusters
}  Solution

}  Modify FitVtx routine to save the vertex position error
}  Replace the hard-coded δWire and δTick cuts with chisq cuts

}  Side note: recob::Vertex has no error on the (x,y,z) position

6

2 GeV CC neutrino interaction w 6 protons

7

Vertex position
(small open circle)
after making these

changes
6 clusters

7 clusters

6 clusters

8

Hammer clusters

No circle displayed à no vertex found
Zoom in on next slide

9

Short clusters not
reconstructed

Similar signature to
ArgoNeuT back-to-
back proton tracks

2 clusters

2 clusters

1 cluster

ClusterCrawlerAlg
New routine - FindHammerClusters

10

}  In each plane, look for:
}  One long (>20 hits) cluster whose End is near a short (< 20 hits)

cluster
}  An (vwire, vtick) intersection point on the short cluster where vwire <

End wire of the long cluster
}  Calculate the X position of the intersection point
}  Store in a temporary struct

}  Match in 3D
}  Create an “incomplete” 3D vertex (i.e. 2/3 planes match) if:

}  The X position of hammer clusters are < fVertex3Dcut
}  X, Y, Z position of the matched 2D vertices is within the TPC
}  Split the short clusters in the two matching planes
}  Create 2D vertices in the two matching planes and assign the short and

long clusters to them
}  Use existing Vtx3ClusterSplit routine to try to “complete” the

3D vertex in the third plane

11

Results

ClusterCrawlerAlg
ChkSignal reminder

12

}  Returns true if there is a “wire signal” between (wire1, tick1)
and (wire2, tick2) (red line in the figure)
}  Original (pre-LArSoft) version checked wire ADC values

}  Not available when wire signals were dropped from the event
}  Converted to check proximity of hits (PeakTimeMinusRMS,

PeakTimePlusRMS) to the expected tick à OLD

Clusters were inappropriately merged
(red line) with the existing code. Fixed
with the changes described à

ClusterCrawlerAlg
ChkSignal revision

13

}  Correct method is to require that the wire signal
amplitude on each wire along the line between (wire1,
tick1) - (wire2, tick2) > expected wire signal (t)

}  Requires calculating the hit amplitude A(t) =
PeakAmplitude * exp (-0.5 * (t - PeakTime)2 / RMS)
}  Or use a Gaussian histogram to speed things up

}  New fcl parameter MinAmp (= 10 for uB) for the
minimum wire signal amplitude

MergeOverlap

14

}  Poorly reconstructed (broken) clusters may overlap each
other – especially cosmic rays

}  Merge clusters using fit information just outside of the
overlap region to select hits within the overlap region
}  Also merge hits in the overlap region if the charge of merged

hits is consistent with charge of hits outside the overlap region

Overlap

region

ClusterCrawlerAlg
Code Development Output Improvements

15

à  recob:EndPoint2D’s
à  recob::EndPoint2D’s
à  recob::Vertex

16

New

New
Old hard cut (cm)

Modified fcl file

CCTrackMaker_module
Algorithm

17

}  Associate ends of broken clusters
}  Simplified scheme using “cluster chains” à

}  Two 3D cluster matching routines
}  VtxMatch uses clusters associated with 3D vertices found by ClusterCrawler

}  Match clusters that start(end) at the same vertex
}  PlnMatch matches clusters using cluster end point information

}  Several passes – long clusters, short clusters, etc à
}  AngMatch matches clusters preferentially by angle

}  Both use FillEndMatch which finds a match error for 2 or 3 clusters at the
“match end” (e.g. a common vertex or similar X) and the “other end” of
the clusters

}  Wire[end], X[end], Angle[end] where end = 0 (US), 1 (DS)
}  Matching σ from fcl file: XMatchErr, AngleMatchErr
}  Match error ~ chgAsym * sqrt(δX2/σX

2 + δA2/σX
2 + δW2/σW

2)
¨  chgAsym = 1 + (BigChg – SmallChg) / (BigChg + SmallChg)

}  Put results into a vector of match structs

New

New
New

CCTrackMaker_module
MakeClusterChains merges Broken Clusters

18

}  ClusterCrawler cluster hits are naturally ordered by increasing
wire number
}  Cluster “End” = 0 (US end, low wire num), 1 (DS End high wire num)

}  Define a cluster Order for inserting in a trkHits vector
}  Consistent hit ordering between planes
}  Default Order = 0 (hits loaded by increasing wire number)

ClsIndex:Order = 0:0 3:0 4:0

0:W0:T0 0:W1:T1 3:W0:T0 3:W1:T1 4:W0:T0

4:W1:T1

Cluster chain composed of ClsIndex:Order = (0:0 3:0 4:0)

Wire

T
im

e

CCTrackMaker_module
Merging Wandering Clusters

19

}  Cluster matching between planes loops over both ends of all
clusters so the sequential ordering of clusters in the chain is
irrelevant but the hit order is
}  Need ClsIndex:Order = (0:0 3:0 4:1) or (4:0 3:1 0:1)

0:0
3:0

4:0

Hit ordering in a track.
Either is OK

Until you match clusters between planes

20

0:0

2:0
3:0

1:0 Need cluster chain = (1:1 0:0 2:0)

21

Cluster chain

Cluster chain

Cluster chain

Match end

Other end

Match end

Match end

Other end

Other end

Broken clusters

CCTrackMaker_module
Matching between planes

22

}  SortMatches
}  Sort by increasing (Err + oErr)
}  Make tracks starting with the best cluster match combination,

ignoring the ones that have already-used clusters
}  This fails if the correct match is ε > an incorrect match à not resilient

à Potential 3D track

CCTrackMaker_module
SortMatches - New

23

}  Method: Find the set of cluster matching combinations that has
the lowest total matching error for ALL clusters in the event
with the fewest number of tracks (matches)

}  Find the total length of all clusters (not used in a track) in all
planes in the matcomb vector (matcombTotLen)
}  VtxMatch: total length of all clusters associated with a vertex
}  PlnMatch: total length of all clusters in the TPC

}  Double loop over match combinations, starting with the best
}  After the first loop, find the total length of all clusters used (totLen)
}  Stop looping if fracLen = totLen / matcombTotLen > 99.9%
}  Calculate a total error = Σ(match errors) * Σ (matches) / fracLen
}  Make tracks using match combinations with the best total error

CCTrackMaker_module
Code Development Output

24

25

Match end Other end Cluster chain indices

CCTrackMaker_module

26

}  Produces

}  PFParticle convention
}  Neutrino PDGCode = 14
}  Neutrino Primary particles PDGCode = 2212
}  Neutrino Secondary particles PDGCode = 211
}  Cosmic rays PDGCode = 13

}  No attempt to associate delta-rays with muons

27

Match end matching

Q = Cluster charge in planes 0, 1, (2)
Qmax = max cluster Q in 2(3) planes
Qmin = min cluster Q in 2(3) plane

Asym = 1 + (Qmax – Qmin) / (Qmax + Qmin)

Δθ using ThirdPlaneSlope ΔWire using IntersectionPoint

χ2/DOF

TrackTrajectoryAlg - Update

28

}  Reminder:
}  Finds a 3D trajectory using an ordered collection of hits in two or three

planes
}  Method: Fit sub-collections of hits at similar X positions using

TrackLineFitAlg to create trajectory points
}  Intended to be a simpler, faster alternative to Kalman fit module

}  Problems with the current version
}  Failed too often
}  Flawed implementation for using the hit charge in lieu of X to create

trajectory points
}  New

}  Abandon charge method
}  Use a simpler scheme for making sub-collections
}  ShortTrackTrajectory finds trajectory endpoints for short tracks or if a

failure occurs in the main algorithm
}  Breaking change to interface

29

30

Notes
Black line: 2D projection of 3D trajectory
Hits associated with have the same color
tracks in each view

TrackTrajectoryAlg in
CCTrackMaker

HitErrFac = 0.2

31

TrackTrajectoryAlg in
CCTrackMaker

HitErrFac = 0.4

VertexFitAlg - New

32

}  Inputs
}  Calling routine reconstructs 3D tracks from hits in 2(3) planes

}  Passes a subset of the track hit collection to VertexFixAlg: WireID, X, X
error

}  Information put in a global struct so that TMinuit can see it à
}  Outputs

}  Vertex position + errors
}  Fitted track direction vectors + errors
}  Chisq/DOF

VertexFitMinuitStruct.h

33

34

Summary

35

}  Testing done on a mac using v04_15_00 mavericks
distribution

}  Further improvements
}  Request feedback from users
}  Matching shower-like clusters in CCTrackMaker

