
Models for the access to pedestals of wire signal

Gianluca Petrillo, Saba Sehrish, Erica Snider

University of Rochester/Fermilab

LArSoft Architecture Review Meeting, July 15th , 2015

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 1 / 8



Pedestal computation models

I have heard of two categories of pedestal computation:
online relative to LArSoft, i.e. pedestals are already known and

final when creating raw::RawDigit’s the first time
– read from the configuration
– extracted from the raw digit itself

offline meaning that it’s not already in the first art event
– obtained from dedicated runs
– extracted after the fact

We need:
1 a common, transparent interface:

“here are event and channel IDs, give me the pedestal”
2 implementations able to support both models

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 2 / 8



Pedestal sources

From LArSoft point of view, pedestals can come from:
event raw::Digit::GetPedestal() in raw digit data

product
another data product amending that information

algorithm computing them on the spot
service accessing a data base

reading a simple configuration (e.g. FHiCL)

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 3 / 8



A proposal

My proposal consists of:
⇒ an abstract service interface
⇒ a provided implementation reading pedestal from

raw::RawDigit

⇒ a provided implementation using PedestalRetrievalAlg
(database access)
if needed, another implementation can be written to read the
pedestals from a new, specific data product
→ saves from reading the raw digits, and allows for recomputing

if an algorithmic approach is required, that should be turned into a
module producing a data product, and use the previous approach

Comments?
– does this satisfy all current needs?
– is this flexible enough to accommodate any foreseeable need?

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 4 / 8



A proposal: interface

Each framework will implement concrete services.
In art, we will have an abstract service interface:
class DetPedestalRetrievalBaseService {

public:
virtual ~DetPedestalRetrievalBaseService() = default;
virtual DetPedestalRetrievalBaseAlg const& GetProvider() const = 0;

}; // class DetPedestalRetrievalBaseService

Listing 1: Pedestal retrieval service interface

The service provider interface might reflect:
class DetPedestalRetrievalBaseAlg {

public:
virtual ~DetPedestalRetrievalBaseAlg() = default;
virtual float PedMean(raw::ChannelID_t ch) const = 0;
virtual float PedRms(raw::ChannelID_t ch) const = 0;
virtual float PedMeanErr(raw::ChannelID_t ch) const = 0;
virtual float PedRmsErr(raw::ChannelID_t ch) const = 0;

virtual DetPedestal const& Pedestal(raw::ChannelID_t ch) const;
}; // class DetPedestalRetrievalBaseAlg

Listing 2: Service provider interface

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 5 / 8



Example implementation of art service

Implementations must take care of updating the status of the service
provider. For example, a database-based implementation might show:
class DetPedestalRetrievalDBService: public DetPedestalRetrievalBaseService {

std::unique_ptr<DetPedestalRetrievalDBAlg> algo;

void Update(art::Event const& evt)
{ algo->Update(lariov::ExtractIOVfromEvent(evt)); }

public:
DetPedestalRetrievalDBService

(fhicl::ParameterSet const& pset, art::ActivityRegistry& reg):
algo(new DetPedestalRetrievalBaseService(pset))
{
reg.sPreProcessEvent.watch
(this, &DetPedestalRetrievalDBService::Update);

}

virtual DetPedestalRetrievalBaseAlg const& GetProvider() const override
{ return *(algo.get()); }

}; // class DetPedestalRetrievalDBService

Listing 3: Example of pedestal retrieval art service implementation

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 6 / 8



Example implementation of service provider

The service provider interface might reflect:

class DetPedestalRetrievalDBAlg: public DetPedestalRetrievalBaseAlg {
public:

DetPedestalRetrievalDBAlg(fhicl::ParameterSet const& pset);

virtual float PedMean(raw::ChannelID_t ch) const override
{ return Pedestal(ch).PedMean(); }

virtual float PedRms(raw::ChannelID_t ch) const override
{ return Pedestal(ch).PedRms(); }

virtual float PedMeanErr(raw::ChannelID_t ch) const override
{ return Pedestal(ch).PedMeanErr(); }

virtual float PedRmsErr(raw::ChannelID_t ch) const override
{ return Pedestal(ch).PedRmsErr(); }

/// Fetch all the channel data at once
virtual DetPedestal const& Pedestal(raw::ChannelID_t ch) const override;

/// Update according to the current interval of validity
void Update(lariov::IOVTimeStamp const& iov);

}; // class DetPedestalRetrievalBaseAlg

Listing 4: Example of service provider implementation

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 7 / 8



Notes about the example

These examples are heavily inspired by the current implementation by
Brandon Eberly. But details differ:

using raw::ChannelID_t instead of unsigned int

accessors are constant (might be less than trivial due to caching)
although each service provider will know how to react to an
update request, that request is not part of the abstract interface
⇒ framework modules can’t control update
provider’s Update() does not accept art::Event

I need also to talk to him before I attempt any change.

G. Petrillo (Rochester/FNAL) Models for the access to pedestals of wire signal July 15th , 2015 8 / 8


