Models for the access to pedestals of wire signal

Gianluca Petrillo, Saba Sehrish, Erica Snider

University of Rochester/Fermilab

LArSoft Architecture Review Meeting, July 151", 2015

GV

UNIVERSITY of

OCHESTER 2= Fermilab

G. Petrillo (Rochester/FNAL) July 151 2015 1/8

Pedestal computation models

| have heard of two categories of pedestal computation:

online relative to LArSoft, i.e. pedestals are already known and
final when creating raw: : RawDigit’s the first time

— read from the configuration
— extracted from the raw digit itself

offline meaning that it's not already in the first art event

— obtained from dedicated runs
— extracted after the fact

We need:

@ acommon, transparent interface:
“here are event and channel IDs, give me the pedestal’

@ implementations able to support both models

G. Petrillo (Rochester/FNAL) July 151 2015 2/8

Pedestal sources

From LArSoft point of view, pedestals can come from:
event @ raw::Digit::GetPedestal () inraw digit data
product
@ another data product amending that information
algorithm computing them on the spot
service @ accessing a data base
@ reading a simple configuration (e.g. FHICL)

G. Petrillo (Rochester/FNAL) July 151 2015 3/8

A proposal

My proposal consists of:
= an abstract service interface
= a provided implementation reading pedestal from
raw: :RawDigit
= a provided implementation using PedestalRetrievalAlg
(database access)

@ if needed, another implementation can be written to read the
pedestals from a new, specific data product
— saves from reading the raw digits, and allows for recomputing

@ if an algorithmic approach is required, that should be turned into a
module producing a data product, and use the previous approach

— does this satisfy all current needs?
— is this flexible enough to accommodate any foreseeable need?

G. Petrillo (Rochester/FNAL) July 151 2015 4/8

A proposal: interface

Each framework will implement concrete services.
In art, we will have an abstract service interface:

class DetPedestalRetrievalBaseService {
public:
virtual ~DetPedestalRetrievalBaseService () = default;
virtual DetPedestalRetrievalBaseAlg const& GetProvider () const = 0;
}; // class DetPedestalRetrievalBaseService

Listing 1: Pedestal retrieval service interface
The service provider interface might reflect:

class DetPedestalRetrievalBaseAlg {
public:
virtual ~DetPedestalRetrievalBaseAlg() = default;
virtual float PedMean (raw::ChannelID_t ch) const = 0;
virtual float PedRms (raw::ChannelID_t ch) const = 0;
virtual float PedMeanErr (raw::ChannelID_t ch) const = 0;
virtual float PedRmsErr (raw::ChannelID_t ch) const = 0;

virtual DetPedestal const& Pedestal (raw::ChannelID_t ch) const;
}; // class DetPedestalRetrievalBaseAlg

Listing 2: Service provider interface

G. Petrillo (Rochester/FNAL) July 151 2015 5/8

Example implementation of art service

Implementations must take care of updating the status of the service
provider. For example, a database-based implementation might show:

class DetPedestalRetrievalDBService: public DetPedestalRetrievalBaseSery
std: :unique_ptr<DetPedestalRetrievalDBAlg> algo;

void Update (art::Event const& evt)
{ algo->Update (lariov::ExtractIOVfromEvent (evt)); }

public:
DetPedestalRetrievalDBService
(fhicl::ParameterSet consté& pset, art::ActivityRegistryé& reg):
algo (new DetPedestalRetrievalBaseService (pset))
{
reg.sPreProcessEvent.watch
(this, &DetPedestalRetrievalDBService: :Update);
}

virtual DetPedestalRetrievalBaseAlg consté& GetProvider () const overrjic
{ return x(algo.get()); }

}; // class DetPedestalRetrievalDBService

Listing 3: Example of pedestal retrieval art service implementation

etrillo (Rochester/FNAL) July 151 2015 6/8

Example implementation of service provider

The service provider interface might reflect:

class DetPedestalRetrievalDBAlg: public DetPedestalRetrievalBaseAlg {
public:
DetPedestalRetrievalDBAlg (fhicl::ParameterSet const& pset);

virtual float PedMean (raw::ChannelID_t ch) const override
{ return Pedestal (ch) .PedMean(); }

virtual float PedRms (raw::ChannelID_t ch) const override
{ return Pedestal (ch) .PedRms (); }

virtual float PedMeanErr (raw::ChannelID_t ch) const override
{ return Pedestal (ch) .PedMeanErr(); }

virtual float PedRmsErr (raw::ChannelID_t ch) const override
{ return Pedestal (ch) .PedRmsErr(); }

/// Fetch all the channel data at once
virtual DetPedestal const& Pedestal (raw::ChannelID_t ch) const overrjic

/// Update according to the current interval of validity
void Update (lariov::IOVTimeStamp const& iov);

}; // class DetPedestalRetrievalBaseAlg

Listing 4: Example of service provider implementation

G. Petrillo (Rochester/FNAL July 151 2015 7/8

Notes about the example

These examples are heavily inspired by the current implementation by
Brandon Eberly. But details differ:

@ using raw: :ChannelID_t instead of unsigned int

@ accessors are constant (might be less than trivial due to caching)

@ although each service provider will know how to react to an

update request, that request is not part of the abstract interface
= framework modules can’t control update

@ provider's Update () does not accept art: :Event
| need also to talk to him before | attempt any change.

G. Petrillo (Rochester/FNAL) July 151 2015 8/8

