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Abstract 
In modern storage rings with slow resonant extraction 

one of the main parameters for optimization is the step 

size, which largely determines the extraction inefficiency, 

or the fraction of beam lost due to hitting the septum 

plane. For given parameters of machine acceptance, beam 

emittance and lattice functions at the extraction septum, 

the optimization constrains all the geometry and 

determines the best achievable extraction efficiency. This 

paper presents a technique of calculating the machine 

performance. 

INTRODUCTION 

Third order resonant slow extraction is a widely used 

technique for delivering a good quality continuous beam 

during a finite time period (spill). The range of possible 

applications of this technique is wide, as well as the range 

of requirements that are imposed by each project. Due to 

the high complexity, the performance optimization at the 

design stage is best be determined in the detailed tracking 

simulations that may include machine optics specific 

details, beam properties, space charge effects, RF 

feedback loops and so on. However it is often desirable to 

determine main limitations of the design without a 

rigorous simulation effort, in particular evaluate the 

maximum possible extraction efficiency. This possibility 

is offered by simple calculations based on the perturbation 

theory and a few reasonable assumptions. Estimating the 

orbits’ stepsizes at the septum and the probability of 

hitting its wires are among the handful of important 

calculations on resonant extraction that can be done in 

quadrature. This is done by approximating the orbits of 

extracted particles as though they were exactly on the 

outgoing branches of the separatrix. The approximation is 

reasonable provided extraction is adiabatic.  

PERTURBATION THEORY 

Figure 1 illustrates the idealized separatrix for the third-

integer resonance. It is drawn in a complexified, 

normalized, horizontal phase space with coordinates as 
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where  and  are the usual Courant-Snyder lattice 

functions. If (x, x’) are canonically conjugate, then so are 

(, I) and (a, a
*
) as can be verified by their Poincaré 

invariants. The Hamiltonian associated with the third-

integer resonance model which, written in angle-action, 

(, I ) coordinates, is Error! Reference source not 

found., 
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Here,   x  29 / 3  0 is the difference between the 

linear (small amplitude) horizontal tune and the resonant 

tune and is presumed to be small; the “resonance coupling 

constant,” g, is a linear functional of the sextupole field 

strength distribution. 
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where the sum is carried out over the locations of the 

sextupoles. The phase of the complex parameter g 

determines the orientation of the third-integer separatrix, 

which is bound by the equilateral triangle with vertices 
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as shown in Figure 1. In the beginning of extraction all 

beam should be included in the starting separatix – this 

determines initial  and g. As  reduces during 

extraction, the separatrix boundary squeezes leaving less 

and less stable beam in the machine. Particles outside the 

separatrix are streaming away along the outcoming rays 

of the triangle like shown by arrows in Figure 1. The 

direction of streaming is dependent on the sign of the . 

STEP SIZE 

The step size is the measure of the speed of particles 

streaming away and it’s determined as an increase of its 

horizontal projection after 3 consecutive turns. In order to 

evaluate the step size we assume that extraction process is 

adiabatic and unstable particle motion occurs in close 

vicinity of the separatrix lines [LM]: 
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Transformation to the x-coordinate can be written then as 
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and the step size is determined from 
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which integrates to 

 

  r

rr
r






)1)36/(exp(3

)3(



 {8} 

 

Figure 1. Separatrix geometry 

OPTIMAL CONDITIONS FOR 

EXTRACTION EFFICIENCY 

Figure 2 shows X1(r), the horizontal position as 

function of the dimensionless parameter r, and X2(r), the 

horizontal position on the next step, or after next 3 turns.  

 
Figure 2.  Current x-position X1 and x-position after 3 

turns, X2 as functions of parameter r. 

 

The horizontal marker lines on the plot are showing the 

Xmax, the boundary corresponding to the machine 

acceptance and the position of the septum wire plane, 

Xsept. The vertical marker R1 indicates the point of 

extraction beginning which happens when on the next 

step a particle would get into the septum field region. The 

next vertical marker R2 indicates the end of extraction 

where X1 no longer belongs to the circulating beam. 

Optimum condition of the step size requires that the blue 

curve crosses the upper boundary at the same time. 

Although normally no physical aperture is present at the 

location of the septum, crossing this imaginary line earlier 

would mean that the particle have reached the amplitude 

bigger than the machine acceptance and is likely to be lost 

elsewhere before reaching the septum. If the blue line 

crosses the upper boundary substantially later, it would 

mean that there is still room to increase the step size. This 

can be acceptable if the machine acceptance is very large 

and the step size is limited by other factors, like the 

maximum strength of the sextupole magnets, for example. 

But in many cases, including FNAL Debuncher ring, 

machine aperture is a limiting factor. The starting point of 

the curves, X0 and their slopes are determined by the size 

of the initial separatrix, which is in turn, determined by 

the initial beam emittance. Assuming that the sextupole 

strength g is constant during extraction and the  is 

known at the beginning of the spill, all parameters 

including the septum wire position turn out to be 

constrained at this moment. There is some room for trade-

off between g and 0 according to {4}, which is resolved 

with other practical considerations.  

The fraction of beam losses on the septum can now be 

calculated as a ratio 
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dw here is the effective wire plane thickness. RL reaches 

its minimum in the end of spill, when X00: 
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PARAMETRIZATION IN TIME 

 

Now we note that the plot in Figure 2 is made at a 

particular moment – at the beginning of the squeeze. As 

the tune moves to the resonance, the shape of the 

separatrix changes and so do the curves on this plot. The 

optimum conditions are changing, and we can 

parametrize these conditions with a single parameter  if 

only this parameter is ramped during the spill. First, note 

from {6} that only a0 determines curve X1(r). According 

to {4} we can write 
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And a0(0) is a function of initial beam emittance. 

Definition of function X2(r) also includes dependence {8} 

on (t). Finally we arrive at analytical expressions of 

optimal XS and RL as functions of initial beam emittance, 

(t), machine acceptance and b-function at the location 

of the septum. However it is not practically possible to 

adjust the wire position XS during the spill. This can be 

compensated to some extent by the dynamic position 

bump. If not, the septum plane position will have to be set 

at some acceptable location which would not be optimal 

at some part of the spill. In this case this constant value 

should be used in expression {10}.  We do not reproduce 

here exact formulae, because they are bulky but quite 

simple to reproduce from the above considerations. 

Instead, we show the fractional loss RL plotted in the 

conditions close to those in the FNAL Debuncher ring. 

Figure 3 shows the septum losses in optimum vs -

function at septum at three different values of tune 

distance to resonance. Machine acceptance is assumed 

35 mm-mr (unnormalized) and initial beam emittance is 

16 mm-mr (normalized) at 95%. More than 15m -

function is needed to reduce losses to the level of 2%. 

 

 
Figure 3.  Septum wire losses vs the -function 

 

Figure 4 explores how the machine acceptance helps 

reducing the septum losses. Again 3 moments in the ramp 

are shown, assuming that ramp starts at DQ=0.01 and 

initial beam emittance is 16 mm-mr (normalized), -

function is 15m. 

 

 
Figure 4.  Septum wire losses vs machine acceptance 

 

Extraction efficiency improves through the ramp for the 

obvious reason of reducing the beam size. The fractional 

losses curve vs the tune difference is shown in Figure 5.  

 

 
Figure 5.  Septum wire losses vs tune difference 

 

SUMMARY 

We described here an semi-analytic approach to 

calculate the limits of fractional beam losses during the 

3
rd

 integer resonance extraction. The parametric 

calculations are offered for arbitrary machine and beam 

parameters.  
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