

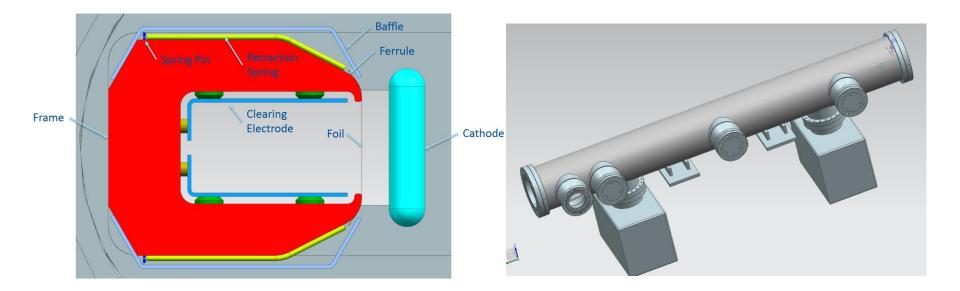
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Mu2e Extraction Septa Design Studies

Matthew Alvarez <u>malvare4@fnal.gov</u> 630-840-8746 Technical Design Review 25-26 August 2015

Outline

- Design Parameters of the Mu2e Septa
- Foil Production Methods
- Foil Tensile Testing
- Foil Mounting and Tensioning Techniques
- High Voltage Testing
- Prototype Frame Rail Flatness Measurement
- Prototype Frame Foil Flatness Measurements
- Conclusion

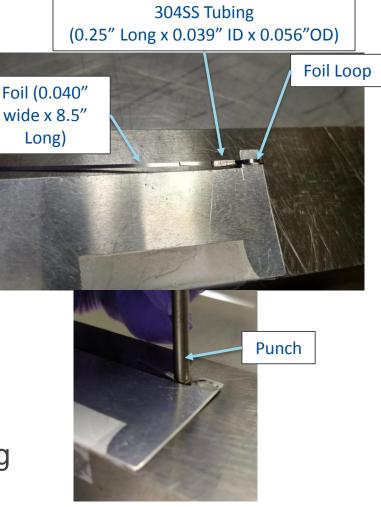


Design parameters of the Mu2e Septa

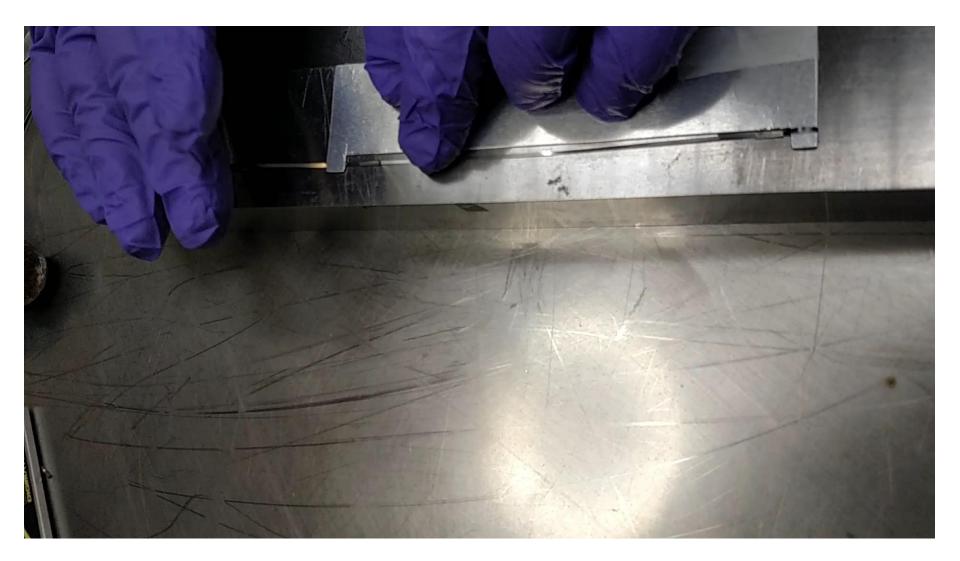
Number of septum modules	2		
Septum length	1.25 m+1.75 m		
Septum voltage	>100 kV		
Cathode material	Ti Grade 1(SS304)		
Septum plane	W25Re (Mo) foils		
Foil thickness	25 μm		
Apparent Thickness	<50 μm		
Foil strip spacing (center-center)	2.6 mm		
Foil strip width	1 mm		
Vacuum	<1e-8 torr		
Total number of foils	1196		
Diffuser length	0.5m		

Overview of the Mu2e Septa

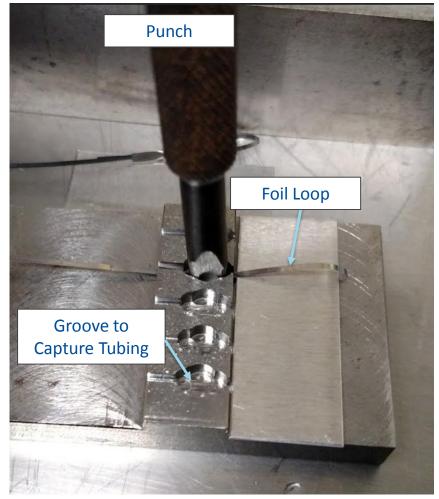
- Anode (Foil Frame) Red
- Cathode Light Blue
- Ion Depletion Plates Dark Blue


Foil Production Methods

5 M. Alvarez | ESS Design Studies


Crimping HV Prototype Assembly

- Fixture used for HV prototype assembly foil production
- Success Rate (73%)
 - 6 foils damaged per day
- Low production Rate
 - 4 foils/hr (~30 foils per day)
 - More can be done with practice
- Pros
 - Ease of setup
 - Cost effective- AI 6061 sheet metal
- Cons
 - Too much handling for foil positioning
 - Crimped joints would sometime slip


Foil Production Video

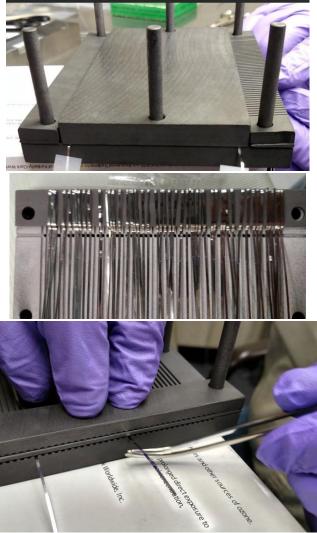
Crimping Frame Prototype Assembly

- Fixture used for Prototype Frame
- Success Rate (73%)
 - 6 foils damaged per day
- Production Rate
 - 4 foils/hr (~30 foils per day)
 - More can be done with practice
- Pros
 - Simple
 - Cost effective
- Cons
 - Fixture did not dampen vibrations from punching
 - Crimped joint would sometimes slip

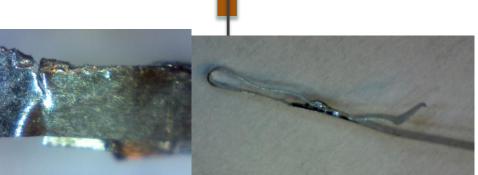


Hydrogen Furnace Brazing

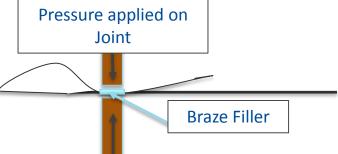
- Braze Filler Palcusil 25
- Braze Temperature 970°C


Foil Looping Method Demonstrated

Hydrogen Furnace Brazing


- Used for Batch Foil Production
- Success Rate (87%)
 6 foils failed per run
- Relatively high production rate
 6 foils/hr (~50 foils per day)
- Pros
 - Potential for higher production rate
 - Temperature below the recrystallization temperature
 - Strong lapped joint
- Cons
 - High cost
 - Cleaning required after brazing

Plasma Arc Brazing

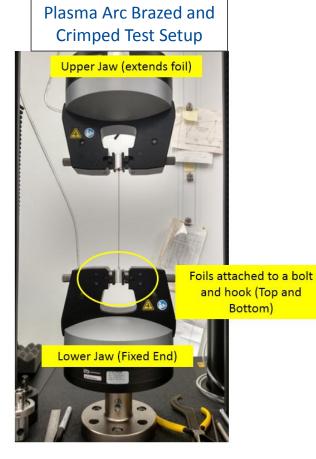

- Used for General Foil Production
- Pros
 - Potential for high production
 - Fixture required
- Cons
 - 18.3% Reduction in Strength
 - Explained later on
 - High temperature weakens material
 - recrystallization
 - Poor shielding gas
 - Need glove box filled with an inert gas

10" CF Flange

Foil Production Methods Discussion

- Crimping
 - Relatively long setup time
 - Hydraulic press design is an option to explore to reduce handling the foil
- Brazing has a potential for high production rates
 - Relatively low setup time
 - High cost
 - Lower costs with more fixtures
- Plasma Arc brazing is not an option
 - Long setup time
 - Lack of temperature control
- All methods need higher production rates to produce at least 1300 foils

Foil Tensile Testing


13 M. Alvarez | ESS Design Studies

Tests and Materials

- Tensile testing
 - Plasma Arc
 Brazed Joint
 - Foil Strength

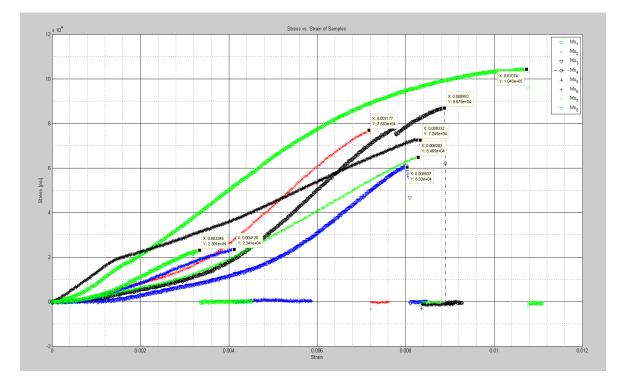
-Strain Rate of 0.050"in/min -Testing Loops

- Foil Materials tested- Mo and W3Re
- Foil Dimension
 - 0.040" W x 0.001 T x 7" L

Foil Test

Plasma Arc Brazed

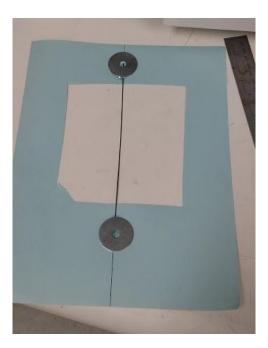
- Failure of the Mo foil occurred at the lapped brazed joint
 - 8 foils were tested
- Mo Tensile Strength-95,000psi (655 MPa)
 - Breaking Load- 4lbs (1.8kg)
- Joint failure was predominant



Plasma Arc Brazed

	Tensile Strength			
Foil Test	Mo	Мо		
	[psi]	[lbs]		
1	104300	4.2		
2	76830	3.1		
3	60300	2.4		
4	86790	3.5		
5	72450	2.9		
6	23410	0.9		
7	64650	2.6		
8	23010	0.9		
avg	77553	3.1		
std	16071	0.6		

	Мо	Мо	Мо
	[psi]	[lbs]	%error
average	77553	3	18.36%
standard deviation	16071	1	(Low)


- 18.36% lower than the average breaking strength of typical foil
- Foil test 6 and 8 are outliers

W3Re and Mo Foil Tests (No Joint)

- Portraits were created for testing the raw foil
- Failure occurred at the center of the foil sample
- Mo Tensile Strength-95,000psi (655 MPa)
 - Breaking load 4lbs (1.8kg)
- W3Re Tensile Strength-449000 psi (3.1GPa)
 - Breaking load 18lbs (8.1kg)

W3Re and Mo Wrought Foil Tests

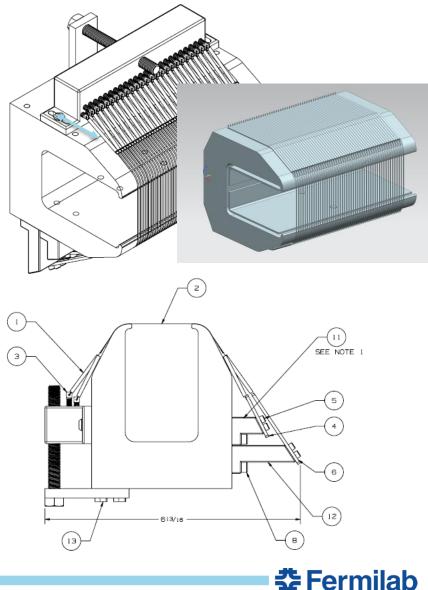
	Tensile						_ x 10 ⁶	Stress vs. Strain of Samples MD1 & MD2 did not break
	Strength	1 1	Br	eaking Fo	rce		5	
	W3%Re	Mo		W3%Re	Мо		X 0.01063 Y: 4.251e4	CODDH C C C C C C C C C C C C C C C C C C C
	[psi]	[psi]		[lbs]	[lbs]		4 ¥ 0.009792 Y: 4.1e+05	
1	425100	105600	1	17.004	4.224		x: 0.007189 Y: 3.457e-05	Knenium : 💥
2	461100	122000	2	18.444	4.88		3	
3	431800	113600	3	17.272	4.544			
4	410000	94270	4	16.4	3.7708			
5	345700	111000	5	13.828	4.44			X 0.02044 X 0.02556 X 10.0252 X 1.136-05 X 1.114-05 X 1
								Molybdenum
	Мо	W3%Re	Mo	o W3%	Re Mo	c	W3%Re	
	[psi]	[psi]	[lbs	s] [lb:	s] %er	ror	%error	002 003 004 005 006 007 006
avg	109294	432000	4.3	7 17.:	28 9.29	9%	3.79%	uuz uus uus uus uu Strain
Std. Dev.	10274	21436	0.4	1 0.8	6			

• Mo Foil

- W3Re Foil
- 9.3% higher than literature value
- 3.79% lower than literature value

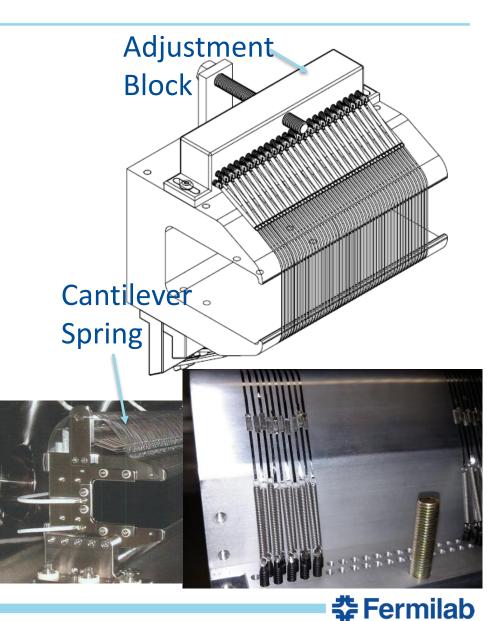
Foil Tensile Testing Discussion

- Plasma arc brazed foils will no longer be considered
 - Temperature regulation is difficult
 - Reduction in strength is observed in tensile tests
- Spot welding a stainless steel tab to the foil is being explored
- W3Re has a high tensile strength of 432,000 psi or 17.3 lbs
- W25Re vs W3Re
 - 2.4 x stronger at 3632 °F (2000 °C)
 - 1.2 x stronger at room temperature


Foil Mounting and Tensioning Techniques

20 M. Alvarez | ESS Design Studies

Prototype Frame

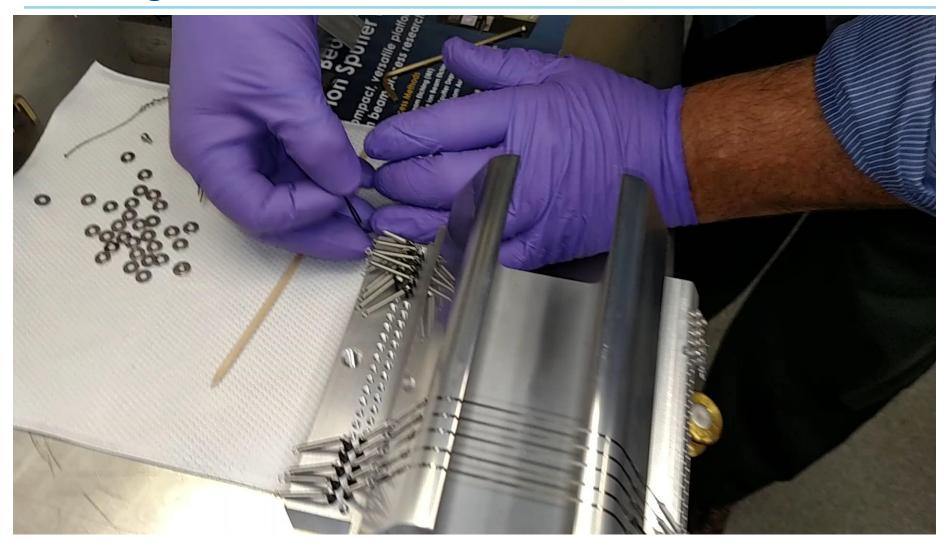

- Purpose: To investigate...
 - Different Mounting Techniques
 - Different Tensioning Techniques
- Foil Mounting types
 - Adjustment Block
 - JPARC
 - Spring Pins
- Foil mounting components
 - Item 3- Spring Anchor
 - Item 1 Springs
 - Items 4 and 6 Adjustment Brackets

8/25/2015

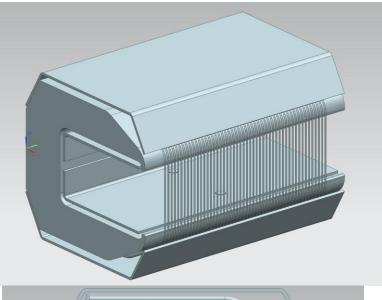
Adjustment Block

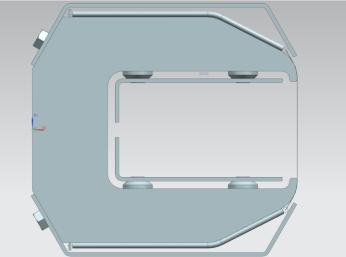
- Tensioning
 - Uses 5/16-24 bolt
- Foils uniformly tensioned on one side
- Negatives
 - Friction between the rail and the foil
 - Adjustment block tends to twists
 - Much handling is needed when placing the foils
 - Broken foil retraction can be done using cantilever spring

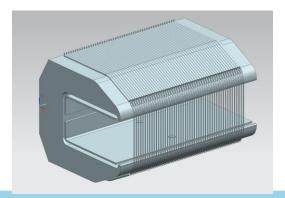
8/25/2015


JPARC Foil Mounting

- Tensioning
 - Weights are attached to adjustment bracket
- Foils uniformly tensioned on one side
- Negatives
 - Friction between the rail and the foil
 - Much handling is needed when laying the foils
 - Broken foil retraction done using cantilever spring


Installing a Foil

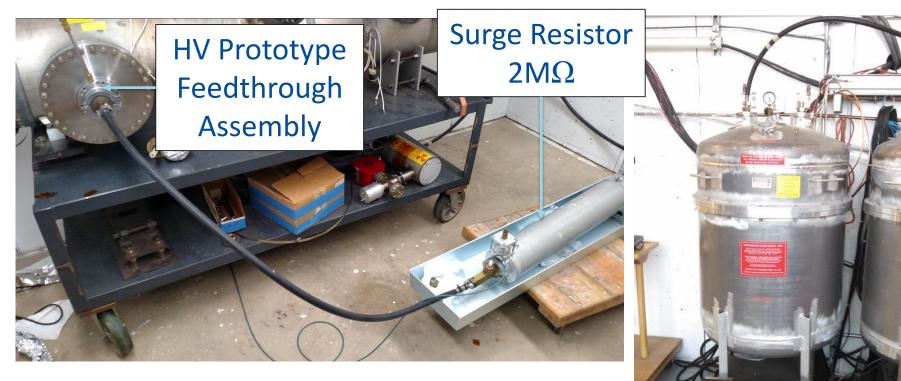



Spring Pin Mounting

- Tensioning
 - Manually done
- Foil retraction done by spring itself
- Negatives
 - Has yet to be tested for assembly and functionality
 - Tensile force is limited

Foil Mounting and Tensioning Techniques Discussion

- Adjustment Block Method
 - Practical, but needs more work to prevent twisting
 - Practical, but makes the removal of a foil difficult
- JPARC Method
 - Adjustment brackets need to be made of a more rigid material
 - Practical, but makes the removal of a foil difficult
- Spring Pin Method
 - Simple and foils are not staggered on top of each other
 - A single spring acts both as a tension spring and retraction spring
 - The spring chosen for this cannot support high tension
- Spring Pin Method is the preferred choice
 - Testing Needed



High Voltage Testing

27 M. Alvarez | ESS Design Studies

High Voltage Test Setup

- Foil Frame and Cathode Testing
 - 300L/s Ion Pump
 - FC77 used as the dielectric insulator
 - SF6 used on the power supply
 - Diala Oil dielectric insulator

170kV Power Supply

HV Prototype Feedthrough Assembly

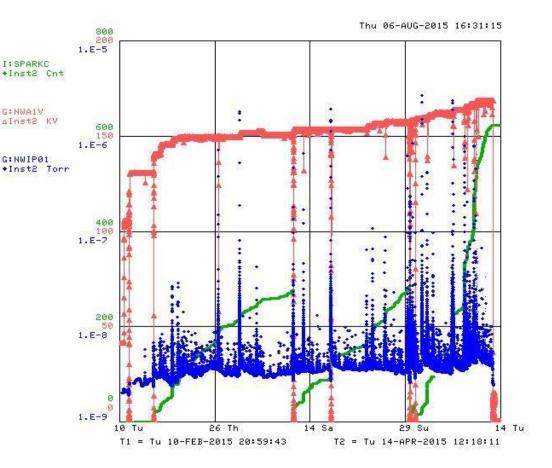
- 304 SS Cathode
 - Mechanically polished
 - Ra=0.831um (Ra=~32uin)
- Anode
 - 88 Mo foils tensioned to 1.4lbs
 - AI 6061-T6 Frame
- Testing of the Cathode is over a 17 day period
 - Peak Voltage 135kV
- Additional Cathode Conditioning
 - Peak Voltage 165kV

High Voltage Testing Data

Total Sparks
 after
 conditioning for
 17 days is 161
 sparks

 Highest spark rate 0.985 sparks/hr @ 135kV

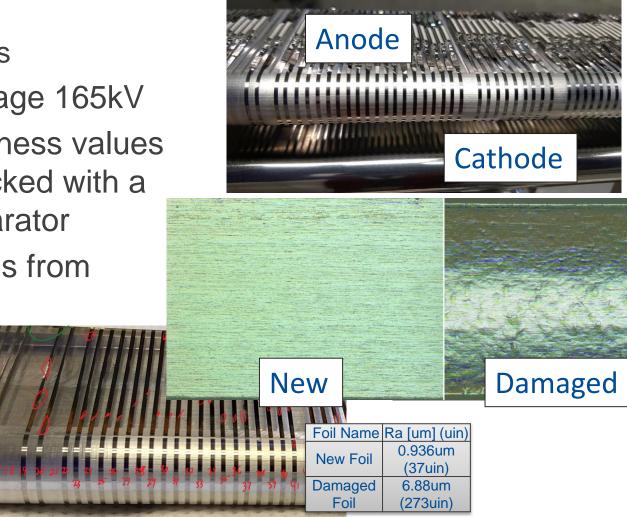
				Controller					
	Date	Time	Voltage	Current	Spark Counter			Hours of Conditioning	Spark Rate
			[KV]	[mA]	Total Sparks	Ramping Voltage	Long Term Conditioning	hours	spark/hr
r 🛛	12/26/2014		100	0.01	0	1			
1	12/20/2014	2:03PM	110	0.012	1		3	25	0.120
	12/29/2014	3:19:00 PM	110	0.013	4	1	3		
	12/29/2014	3:40:00 PM	120	0.026	5	Ĩ	9	16	0.563
	12/30/2014	8:48:00 AM	120	0.024	14	2			
	12/30/2012	9:21:00 AM	125	0.027	16		12	22.5	0.533
	12/31/2014	7:53:00 AM	125	0.016	28	14			
	12/31/2014	8:23:00 AM	130	0.024	42	14	29	47	0.617
	1/2/2015	9:52:00 AM	130	0.023	71	10	29	47	0.017
	1/2/2015	10:30:00 AM	135	0.034	81	10	67	68	0.985
	1/5/2015	8:41:00 AM	135	0.031	148	0			
	1/5/2015	8:45:00 AM	120	0	148		2	94	0.021
	1/9/2015	8:23:00 AM	120	800.0	150	0 -	2	94	0.021
	1/9/2015	8:27:00 AM	130	0.03	150	U	11	71.5	0.154
	1/12/2015	10:36:00 AM	130	0.023	161	0		71.5	0.154
	1/12/2015	10:40:00AM	0	0	161	0			

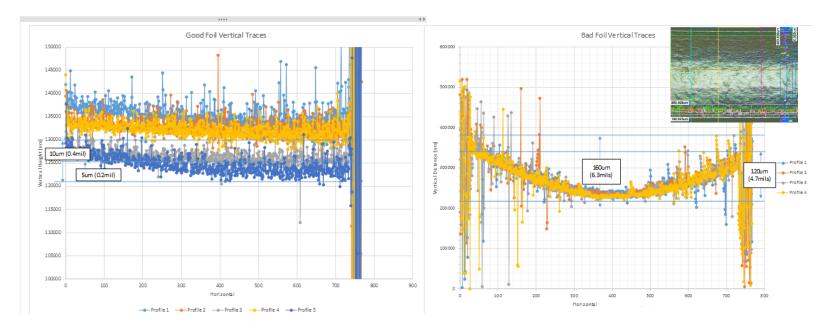

🛟 Fermilab

8/25/2015

- Spark rates after conditioning
 - 0.021 sparks/hr (186 sparks/yr) @ 120kV (2544% Reduction)
 - 0.617 sparks/hr (1347 sparks/yr) @ 130kV (301% Reduction)

ACNET DATA


- Red- Voltage (kV)
- Blue- Pressure (torr)
- Green- Spark Counter
- Spark Indication
 - Variation in vacuum pressure
 - Variation in the voltage


High Voltage Testing Inspection

- HV test short
 - 6 broken foils
- Maximum voltage 165kV
- Surface roughness values are cross checked with a surface comparator
- 60 affected foils from sparking

High Voltage Testing Data

🛟 Fermilab

8/25/2015

- Apparent thickness of an undamaged foil is 35um
 - The foil is 10um out of flat
- Damaged foil apparent thickness is 185.4um (0.0073")
 - The foil is out of flat by 160um

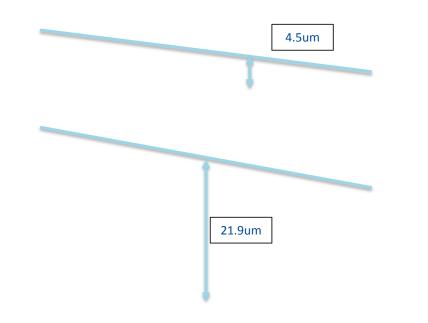
High Voltage Testing Discussion

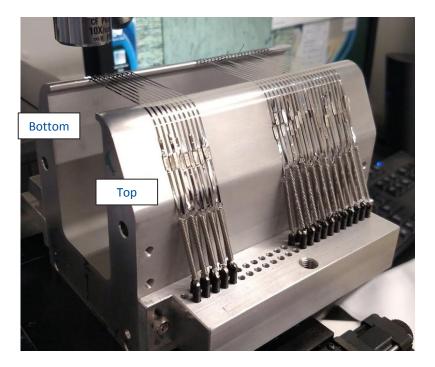
- Significant reduction in sparks during conditioning
- Sparking is detrimental to the apparent thickness of the foils
 - 185.4um apparent thickness has been measured on a single foil
- Spark mitigation via vacuum and cathode polishing and coating techniques
- Using W25Re instead of W3Re or Mo
 - Strength at higher temperatures
- Cathode Testing
 - Ti Grade 2 cathode is being tested
 - Ti Grade 2 cathode with TiN coating will be tested in the future

8/25/2015

 Surface roughness values less than or equal to 0.2um is achievable
 Eermilab

High Voltage Testing Discussion (continued)


- Conditioning Techniques
 - Slowly ramp voltage while watching the vacuum pressure
 - Create program for a gradual voltage increase with pressure feedback



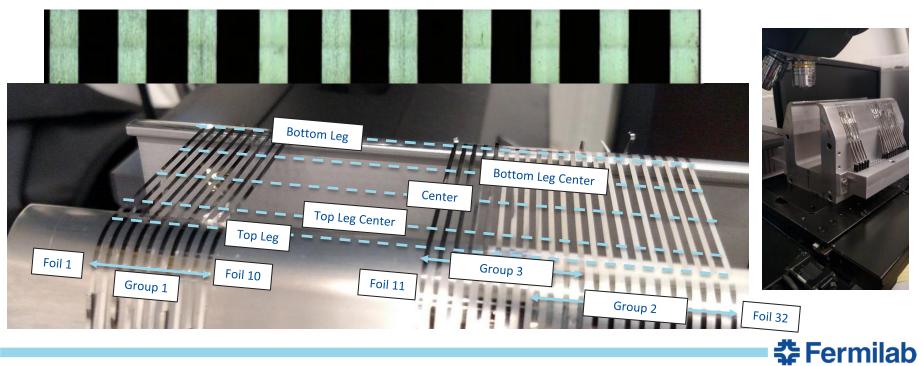
Prototype Frame Rail Flatness Measurements

Prototype Frame Flatness

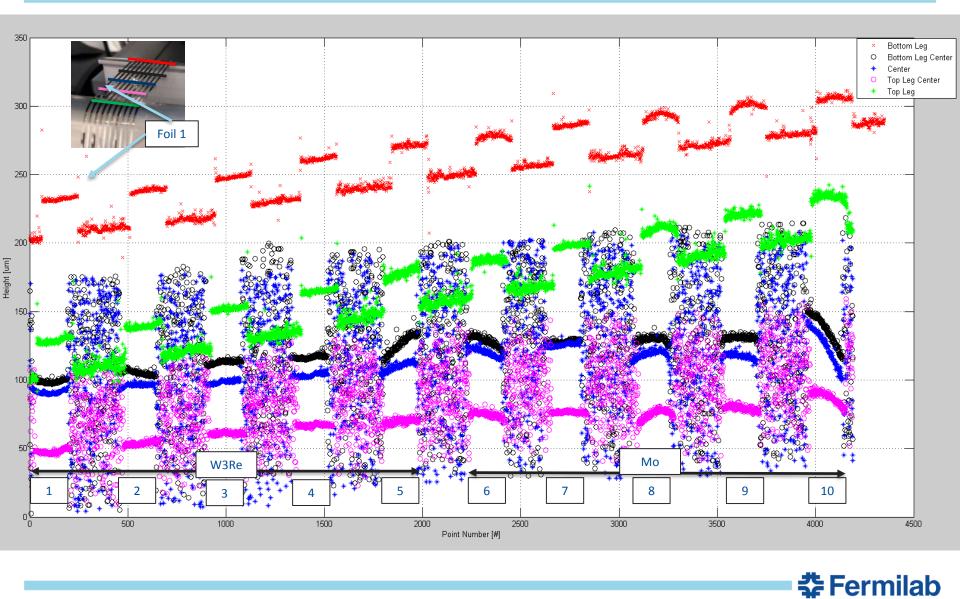
- The rail slope
 - Top Leg=-.061mm/um
 - Bottom Leg=-.042 mm/um
- Bottom Leg is out of flat by 21.9um (12.5um is required)

🛟 Fermilab

Discussion

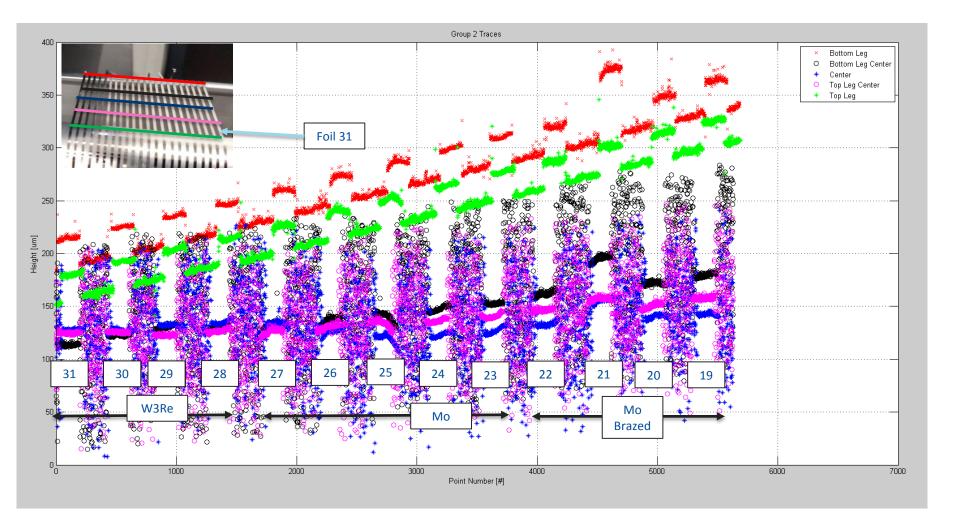

- Will mounting the foils on the full length frame affect the apparent thickness of the foil plane?
 - Need measure with foils and retraction springs
- Find a vendor that can meet the machining specifications that we require for the frame

Prototype Frame Foil Flatness Measurements


Prototype Frame Flatness Measurements

- Keyence Laser Profilometer VK-9700K
- Foils
 - All foils are crimped or brazed
 - W3Re: #1-5,11-14,28-32
 - Mo Foil:# 6-10, 15-18, 19-22 (Brazed), 23-27

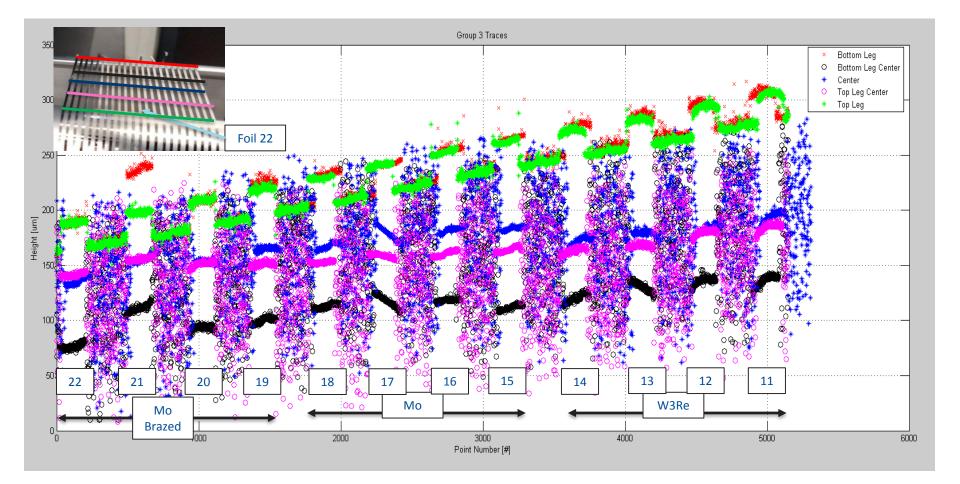
8/25/2015


Group 1

41 M. Alvarez | ESS Design Studies

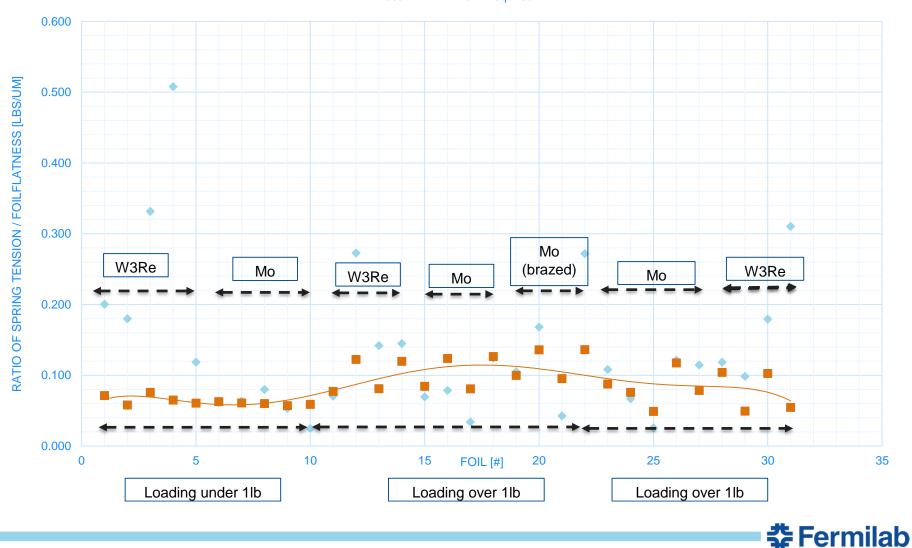
8/25/2015

Group 2



‡ Fermilab

8/25/2015


Group 3

8/25/2015 **Fermilab**

43 M. Alvarez | ESS Design Studies

Foil Tension and Apparent Thickness

8/25/2015

◆ Result ■ Minimum Required

Discussion

- Do not see any correlation between spring tension and apparent thickness
 - Additional data needed
- W3Re foils have a significantly less apparent thickness than the other foils
- W3Re is stronger and can withstand the installation process of the foil
- W3Re foils appear to be a preferred choice
- Need to continue testing with W25Re foils

	Мо	Mo (Brazed)	W3Re	Total
Good Foils	5	3	12	20
Bad Foils	9	1	1	11
Total	14	4	13	31
% Meet Specification	35.7%	75.0%	92.3%	64.5%
Average out of Flat [um]]	15.9	14.1	6.4	11.7
Standard Deviation [um]	6.8	8.3	3.4	7.4

Conclusion

Conclusion

- Foil Production Methods
 - Brazing looks promising with a potential for high production rates and less handling
 - Can W25Re or W3Re be brazed similarly?
 - Spot welding SS to Mo or W3Re is being explored
- Foil Tensile Testing
 - W3Re has a significantly higher breaking strength than Mo
 - W25Re has high breaking strength at high temperatures
- Foil Mounting and Tensioning Techniques
 - Spring Pin Method is promising
 - Integrates tension and retraction into a single spring

🛠 Fermilab

8/25/2015

• Limited by available spring tension

Conclusion (continued)

- High Voltage Testing
 - Foil Flatness
 - Sparking to the foil plane is very damaging
 - An apparent thickness of 185um has been measured
 - To regulate sparking, vacuum pressure must be monitored
 - create a program that uses vacuum pressure as a feedback when conditioning the septa
 - Polishing and coating techniques can help reduce sparking
- Prototype Rail Flatness Measurements
 - Need to locate a vendor who can machine our frame to our specifications

Conclusion (continued)

- Prototype Frame Foil Flatness
 - Data does not show any correlation between foil tensile loading and the apparent thickness
 - W3Re withstands the installation process onto the frame better than Mo

