Channel filtering in LArSoft

Gianluca Petrillo, Saba Sehrish, Erica Snider

University of Rochester/Fermilab

LArSoft Coordinators’ Meeting, July 281", 2015

GV

UNIVERSITY of

OCHESTER 2= Fermilab

G. Petrillo (Rochester/FNAL) LArSoft coords., July 28" | 2015 1/14



Channel filtering

The channel filter provides information about goodness of each TPC
readout channel.

The information hosted so far includes:
bad channel is dead of irremediably bad
noisy channel is noisy

non-physical channel has no actual data
(added by MicroBooNE to describe “wireless” channels)

@ currently implemented as a non-configurable class with all the
information from all the experiments hard-coded in the constructor
@ bug #1083 (!) tracks the issue

G. Petrillo (Rochester/FNAL)

LArSoft coords., July 2gth ,2015 2/14


https://cdcvs.fnal.gov/redmine/issues/1083

Current uses

Very simple to use: instantiate, then query.

#include "Filters/ChannelFilter.h"

Y
filter::ChannelFilter chanFilt;

/Y ooo

for (auto & itr : planeIDToHits) {
allhits.resize(itr.second.size());
allhits.swap(itr.second);

fDBScan.InitScan(allhits, chanFilt.SetOfBadChannels());
/).
}

Listing 1: Excerpts from DBcluster module
Currently used in:
calibration recob: :Wire should not be created for bad channels
reconstruction algorithms for track-like clusters check if a gap was due
to a bad channel (usually, in the wrong way)
event display learn if channel is bad, draw it accordingly

G. Petrillo (Rochester/FNAL) LArSoft coords., July 2gth ,2015 3/14



ChannelFilterProvider

The solution: ChannelFilterProvider
Provide access to channel quality information by a service. J

This solution was discussed and accepted at LArSoft Architecture
meeting on June 24" | 2015:
@ as easy as the current one to use in the code
o follows the service provider/framework interface model:
— ChannelFilterProvider provides functionality
— ChannelFilterService provides ChannelFilterProvider
(from art)
@ implements interface/implementation model:

— ChannelFilterProvider/ChannelFilterService are
abstract interfaces

— each experiment must choose a proper implementation

G. Petrillo (Rochester/FNAL)

LArSoft coords., July 2gth ,2015 4/14


https://indico.fnal.gov/conferenceDisplay.py?confId=10091
https://indico.fnal.gov/conferenceDisplay.py?confId=10091

Models

FHICL file model (implemented in larevt)

This implementation is provided in larevt repository as
SimpleChannelFilter/SimpleChannelFilterService:

@ service FHICL configuration contains all the channel information
@ the content is never updated: all runs have the same lists
@ in other words: a glorified ChannelFilter

These are characteristics of a possible DB-based implementation:
@ the service configuration contains database connection directions
@ the service provider deals with the specific database structure

@ the service provider turns queries to the database;
caching is an implementation detail

@ the art service triggers content update on every new event

G. Petrillo (Rochester/FNAL)

LArSoft coords., July 2gth ,2015 5/14



Amended use syntax

Still very simple to use: get the provider, then query.

#include "art/Framework/Services/Registry/ServiceHandle.h"
#include "Filters/ChannelFilterService.h"
#include "Filters/ChannelFilterProvider.h"

// .
filter::ChannelFilterProvider consté& chanFilt

= art::ServiceHandle<filter::ChannelFilterService> () ->GetProvider () ;
//

for (auto & itr : planeIDToHits) {
allhits.resize (itr.second.size());
allhits.swap(itr.second);

fDBScan.InitScan(allhits, chanFilt.BadChannels());
VYA
} // for

Listing 2: Amended DBcluster module code

G. Petrillo (Rochester/FNAL) LArSoft coords., July 28t 2015




Reminder on service provider/framework interface

Note the difference with services that are not based on the service
provider/framework interface model:

filter::ChannelFilterProvider const& chanFilt
= art::ServiceHandle<filter::ChannelFilterService> ()->GetPrc

vider () ;

Listing 3: How to fetch the service provider

@ ask the framework for service/framework interface
(ChannelFilterService):

art::ServiceHandle<filter::ChannelFilterService> ()
@ ask the service/framework interface for the service provider:
art::ServiceHandle<filter::ChannelFilterService> () ->GetProvider ()
— the result is a reference to the service provider

(ChannelFilterProvider), rather than the service/framework
interface : filter::ChannelFilterProvider const& chanFilt

G. Petrillo (Rochester/FNAL)

LArSoft coords., July 2gth ,2015 7/14



Source code

Code is in branch feature/Issuel083 under the following
repositories:

larevt inFilters/:

@ interface headers

@ FHiCL-driven service implementation
(SimpleChannelFilter), with unit test

@ ChannelFilterService FHICL configuration files
for MicroBooNE, ArgoNeuT, Bo (the former two should
be moved into experiment repositories)

@ updated ADCFilter using directly the new service

Ionecode in 1bnecode/lbne/Utilities:

@ ChannelFilterService FHICL configuration files
for DUNE, and updated global service configurations

G. Petrillo (Rochester/FNAL) LArSoft coords., July 2gth ,2015 8/14



What breaks, what does not

@ ChannelFilter has been reimplemented to internally use the
service:

e user code does not change...
e ... but the new service must be configured!!
@ ChannelFilter will be eventually

@ in general, ChannelFilterService must be configured

@ using ChannelFilterProvider in place of ChannelFilter
requires minor, one-to-one changes to user code

Replace ChannelFilter::... .. withChannelFilterProvider::...
BadChannel () isBad ()

NoisyChannel () isNoisy ()

SetOfBadChannels () BadChannels ()
SetOfNoisyChannels () NoisyChannels ()
GetChannelStatus () n/a; use also isPresent (), isGood ()

These changes are documented in ChannelFilter class.

G. Petrillo (Rochester/FNAL) LArSoft coords., July 2gth ,2015 9/14



@ code is ready in feature branches
@ breaking change: experiment configuration need to be updated!

) and eventually removed
the compiler will tell you

@ LArSoft code has not yet been migrated from the deprecated
ChannelFilter to the service (with one minor exception)

@ the name can change upon timely request (cue: speak now)

G. Petrillo (Rochester/FNAL)



Backup

G. Petrillo (Rochester/FNAL)



Service provider interface

The service provider might follow this interface:

class ChannelFilterProvider ({
public:
using ChannelSet_t = std::set<raw::ChannelID_t>;

virtual ~ChannelQuality () = default;

virtual bool isPresent (raw::ChannelID_t channel) const = 0;

virtual bool isGood (raw: :ChannelID_t channel) const = 0;

virtual bool isBad (raw: :ChannelID_t channel) const = 0;
0

virtual bool isNoisy (raw::ChannelID_t channel) const

~

virtual ChannelSet_t GoodChannels () const = 0;
virtual ChannelSet_t BadChannels () const = 0;
virtual ChannelSet_t NoisyChannels () const = 0;

virtual bool Update (lariov::IOVTimeStamp consté& ts) = 0;

}; // class ChannelFilterProvider

Listing 4: filter: :ChannelFilterProvider interface

The art service would just return the service provider.

G. Petrillo (Rochester/FNAL)



Additional features

Optional features that can be implemented on demand:

@ legacy ChannelFilter class reproducing the old behaviour
(it will still require the new service to be configured)

@ iterators to channel IDs with specific quality (e.g. good)
© iterators to channel IDs with custom quality

© iterators to raw: :RawDigit (as for channel IDs)

@ interface extension to get channel quality as map of bits
o ..

None of these have been considered worth implementing immediately.

G. Petrillo (Rochester/FNAL)



Additional bit-based interface

class filter::ChannelQuality {
public:
// the stuff above, plus:

constexpr size_t NBits = 32;
using ChannelBits_t = std::bitset<NBits>;

typedef enum ({

cgNonPhysical, ///< no wire connected to the channel
cgDead, ///< dead channel
cgNoisy, ///< noisy channel

cgCustomQualityStart = 16U ///< from this on: experiment-specifilc
} ChannelQuality_t;

virtual ChannelBits_t ChannelStatus
(raw: :ChannelID_t channel) const = 0;
virtual bool isChannel
(raw: :ChannelID_t channel, ChannelBits_t mask) const;

}; // class filter::ChannelQuality

Listing 5: Additional (optional) interface for bit-based quality

G. Petrillo (Rochester/FNAL;



	Appendix

