
1

Muon pT scale at high energies in the CMS detector

Grace E. Cummings
Virginia Commonwealth University, SIST Intern

07 Aug 2015

Advisers Pushpa C. Bhat and Leonard G. Spiegel
Fermi National Accelerator Laboratory

Abstract

For searches beyond the Standard Model with the Compact Muon Solenoid (CMS) detector,

a detailed understanding of systematic uncertainty in the transverse momentum (pT) scale of the

detector is necessary. From cosmic ray muon studies, it is apparent that the barrel of CMS has a

5% uncertainty in the pT scale for muons at 1000 GeV/c. This scale is unobserved at low or

moderate pT values, and therefore does not affect the reconstruction of the Z boson’s dimuon

decay channel. The 5% uncertainty becomes important in the search for massive new particles

(e.g., Z’). This uncertainty is believed to arise from a weak mode within the detector. For the

Run 2 CMS detector the uncertainty in the scale for high pT muons and its effect on

reconstructed dimuon invariant mass has not yet been studied. Dimuon invariant mass is the

mass of a parent particle with 𝜇+and 𝜇− decay products. Minimum dimuon mass is used to

impose lower mass thresholds (cuts) on event counting studies in particle detection. Through our

study, we have developed a parameterization for the effect of pT scaling on event count within

CMS as a function of dimuon minimum mass.

2

1. The Compact Muon Solenoid Experiment

1.1 The Detector

The Compact Muon Solenoid (CMS) detector is one of two general purpose detectors at

the LHC [1]. The detector is made of several sub-detector systems. The collision point lies at

the nominal center of the detector, and the layers of the detector cylindrically extend outward,

with each detector sub-system designed to measure different properties of collision events. The

innermost layer of the detector, closest to the collision point, is the silicon tracker, which

measures the paths of particles as they leave the collision. Following the tracker is the

electromagnetic calorimeter (ECAL). This detector layer stops and measures the energy

contained in electrons and photons. Radially out, the hadron calorimeter (HCAL) measures the

energy of hadronic collision products. The last layer of detecting material is the muon system, a

further stratified system with alternating layers of muon chamber and steel flux-return yoke for

the magnetic field. The muon system is the last detector subsystem. Muons are the only

particles (besides neutrinos) that barely interact in matter and live long enough to travel into

outer layers of the detector.

Figure 1: Zoomed in image of a radial section of the CMS detector illustrating particle paths and interactions. [2]

3

Between the HCAL and the muon system lies the 4 Tesla superconducting solenoid

magnet. The magnetic field bends the paths of charged particles within the detector, allowing for

momentum measurement. Past the solenoid, the muons change the direction of their curvature

due to the returning magnetic field outside of the magnet. For high pT muons, the muon system

dominates the resolution of muons.

1.2 pT scaling in the CMS detector

The measurement of the transverse momentum (pT), 𝜂, and 𝜙 parameters of particles

within the CMS detector allows for the reconstruction of the parent particle’s mass. For muons

which have little interaction in the calorimeter, the pT measurement is the only method to

determine the energy of the particle, a quantity necessary for the parent mass calculation. At

high pT, a systematic uncertainty enters the measurement [3], believed to be from a weak mode

within the muon system. For a pT value of 1 TeV, the uncertainty in the muon pT scale is ~5%,

and this scaling is assumed to increase with increasing pT. Cosmic ray muon studies, used for the

commissioning and alignment of the detector, provided this 5% value.

Figure 2: Drell-Yan process Feynman diagram produced using ROOT.

4

For the first run of the LHC, the Aachen CMS research group analyzed the effects of this

scaling for 8 TeV collisions [4]. The goal of their study was to understand how the pT scaling

affects the dimuon invariant mass calculation, and therefore affects the number of particles

counted above a certain mass threshold. The scaling could result in an artificial over-counting of

events above a minimum mass threshold, potentially misleading particle searches. We

performed this study to look into this effect on the Drell-Yan process with dimuon decay at 13

TeV.

The Drell-Yan process is the quark/antiquark annihilation that produces either a Z boson

or a virtual photon, which then decays to two oppositely charged leptons (Fig. 2) [5]. Dimuon

production is the focus of this study. Drell-Yan is the primary background for many beyond the

Standard Model searches with dilepton final states, such as the search for the theorized Z’ (a

massive analog of the Z boson); thus an accurate count of the background events is paramount.

1.3 CMSSW, the user data handling software

For the standardization of analysis across the experiment, the CMS experiment has

developed an analysis framework known as CMSSW [6]. The framework includes generation,

simulation, and analysis systems for the CMS experiment. CMSSW is accessed through release

packages installed either through cmslpc at FNAL, lxplus at CERN, or other computing centers

associated with the CMS collaboration. Once the release has been installed, aspects of CMSSW

can be called through the command line.

 CMSSW integrates many aspects of high energy physics analysis, forging links between

traditionally standalone programs without the need for explicit user input. This efficiency

streamlines complex workflows. The framework serves to standardize code, allowing for easier

communication across the collaboration; however, the standardization of the code and

5

implementation of links reduces user control through a dependence on automatically generated

script skeletons and dense file downloads [7]. The CMSSW framework is also harder to initially

learn due to its complexity and documentation.

2. Monte Carlo Generation with PYTHIA 8

To model the effects of pT scaling on the Drell-Yan process, the process is generated

using Monte Carlo techniques. Monte Carlo is an experimental technique used to generate

outcomes based on defined initial parameters and random generation based on probability

functions. In the case of high energy particle physics, this produces collision events and their

respective measurable characteristics, such as particle energy or momentum.

PYTHIA 8 is a Monte Carlo generator used to produce high energy physics events. It

can model collisions of electron beams, electron/positron beams, proton beams, and

proton/antiproton beams [8, 9]. The default parton distribution library used in PYTHIA 8 is

CTEQ5L [10]. PYTHIA 8 can run in two ways: standalone and within the CMSSW framework.

The standalone version runs with C++ main programs, and can produce its own initial analysis.

To do more sophisticated analysis, PYTHIA 8 output is often merged with ROOT in order to

produce a ROOT formatted output file. In principle, the PYTHIA 8 and ROOT standalone

libraries can be linked, but this is difficult in practice. The CMSSW framework streamlines the

link between PYTHIA 8 and ROOT. Within CMSSW, PYTHIA 8 is called with a Python script

that loads issued support files allowing the Python language to read the PYTHIA 8 commands.

Regardless of the mode of usage, PYTHIA only generates the initial events. Within the

framework, the Python configuration file can be changed to run the events through the CMS

detector. In our project, we focused only on generator-level production, with no CMS detector

simulation.

6

In this study, PYTHIA generated high pT dimuons through the Drell-Yan process. Table 1

contains the PYTHIA 8 cards used for Drell-Yan event generation. Additional cards were also

used to set the tune of the generation, but are not directly related to the Drell-Yan process.

PYTHIA 8 allows both 2 → 1 and 2→2 interaction possibilities for the Drell-Yan process. For

the generation of Z/γ* →µ+µ- , PYTHIA 8 uses a combination of electroweak physics and QCD

physics, to account for the whole process of quark/antiquark annihilation and Z boson decay [8].

Table 1: PYTHIA 8 Cards for Drell-Yan Process

PYTHIA 8 Card Process Description

WeakZ0:gmZmode = 0 Default, allows for γ* and Z boson decay with

interference

WeakSingleBoson:ffbar2gmz = on Turns on Drell-Yan production

23:onMode = off Turns off decays from Z0/γ*

23:onIfAny = 13 Turns on Z/γ* dimuon decay channel

PhaseSpace:mHatMin =

‘str+(options.minMass)

Set minimum generated √𝑠̂ (parton center-of-

mass energy) through command line

PartonLevel:FSR = on Default, turns on final state radiation

3. Analysis

The analysis of the generated data takes two steps: a ntuple generation step, to reduce size

and content of the original generation file, and a second analysis step, applying the pT scaling and

mass reconstruction.

7

3.1 Initial Analysis

 The event files were generated within CMSSW, thus the file’s structure and content are

dictated by the Event Data Model, featured in the program package. Due to the EDM, the event

data is named and called through standardized headings. Each datum is assigned four variables,

a C++ data type (or handle), a module label, a product instance label, and a process name [11].

To access data types within a file, there is an analyzer class within CMSSW. EDAnalyzer, the

CMSSW class, allows for the analysis of a data file while preserving the original structure and

content. To work within the EDAnalyzer class, CMSSW has a utility to generate skeleton

analyzers. These skeletons are customized to perform the desired tasks, and are called through a

C++ plugin in a Python script.

 The initial ntupler, calls the “recoGenParticleCollection” C++ handle, to begin selecting

for muons. The ntupler is a C++ plugin called through a second Python configuration script. The

generation file has no detector simulation, thus the muons have not been reconstructed and

assigned a new data type. They are selected manually. Using the PID value for muons, 13, the

analyzer loops through all particles generated. PYTHIA 8 generates and stores all of the particles

produced, including intermediate particles. The plugin code was adapted to collect the last

daughter particles using a recursive function. Only collecting last daughters accounts for final

Figure 3: Drell-Yan process Feynman diagram including final state radiation.

8

state radiation (Fig. 3). This radiation results in dimuons that have a reconstructed mass that may

be less than the generated “minimum mass.”

 Once the muons are selected, their η, ϕ, and pT values are collected and written to a

ROOT tree stored in a new file, forming the ntuple for further analysis. A Python script

executed with the CMSSW command cmsRun calls the plugin that selects for muons and fills the

tree. The Python executable applies the plugin to the initial generation file and writes the output

ROOT file containing the tree.

3.2 ROOT Analysis

To apply the pT scaling and calculate the dimuon invariant mass, the study employed a

ROOT class structure [12]. The TTree:MakeClass() command executes within the ROOT

command line, and generates two C++ files, a header file and an executable, tailored to the

contents of a ROOT tree. The branches of the tree, which contain the event data, are assigned to

variables in the header file. The executable contains an automatically generated loop that when

called for the variables defined in the header file retrieves all of the values housed at the tree

branch address. Once the event data can be accessed through variables, manipulation can be

done through the executable C++ macro. A class was made from the tree produced within the

output of our ntuple. To view my ROOT macros, please see Appendix II. The original tree had

branches for each final state muon daughter of the Drell-Yan process. For each muon, the pT had

to be scaled separately. When the pT is in GeV, the scale factor used for pT is

𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.0 ± 0.05 (
𝑝𝑇

1000
). (1)

This factor accounts for the observed 5% scaling of pT for pT = 1000 GeV/c . For the dimuon

mass calculations, a scaling was calculated for a both a 5% increase and decrease at 1000 GeV/c.

The Aachen study at 8 TeV assumed the same scale factor as show in Equation (1).

9

 Using the scaled pT , 𝜂, and 𝜙, the macro calculates the dimuon invariant mass. Since the

mass of the muon, roughly 105.7 MeV/c2, is very small in comparison to the masses in our study

(800 GeV/c2 and larger) we ignored the muon mass in our mass calculation. Dropping the muon

mass must be done carefully to find the invariant mass expression. The following expression

 𝑀𝜇1𝜇2 = √2𝑝𝑇1𝑝𝑇2(cosh(𝜂1 − 𝜂2) − cos(𝜙1 − 𝜙2)), (2)

 was used to calculate the invariant dimuon mass. For the complete derivation of this expression,

please see Appendix I. The pseudorapidity, η, within the mass expression is given as

 𝜂 = − ln (tan (
𝜃

2
)). (3)

This term is used instead of θ because Δ𝜂 is Lorentz invariant.

 For particle discoveries, an accurate count of the number of events above a certain

threshold is critical. To transfer the scaling experienced through the pT to an effect on the

number of particles detected, the difference between the count of entries produced due to the

scaled mass and count of true entries must be calculated. Starting at 1000 GeV/c2, the number of

entries greater than or equal to the selected lower mass threshold are calculated, in increments of

20 GeV/c2. Then, the relative difference, given as

𝑟𝑒𝑙𝑑𝑖𝑓𝑓 = |
(𝑒𝑛𝑡𝑟𝑖𝑒𝑠𝑠𝑐𝑎𝑙𝑒𝑑 ≥ 𝑀𝑚𝑖𝑛) − (𝑒𝑛𝑡𝑟𝑖𝑒𝑠𝑡𝑟𝑢𝑒 ≥ 𝑀𝑚𝑖𝑛)

(𝑒𝑛𝑡𝑟𝑖𝑒𝑠𝑡𝑟𝑢𝑒 ≥ 𝑀𝑚𝑖𝑛)
|,

is calculated. This expression gives the fractional difference between the number of true entries

and the entries that would be expected due to scaling. All of this is included in the executable

ROOT macro.

10

4. Results

The study consisted of three 100k event root files containing Drell-Yan produced events.

The first file had a minimum generated √𝑠̂ (parton center-of-mass energy) of 800 GeV/c2, the

second 1300 GeV/c2, and the final file 1800 GeV/c2. These files were then run through the

analysis work flow, and produced shifted mass values and relative difference distributions. To

examine the mass, the ROOT macro produced four graphs (Fig. 4). These graphs served as a

check for the correctness of our analyzer. To achieve better statistics, the relative difference

calculations from the three files were merged to achieve one relative difference distribution (Fig.

5). The 800 GeV/c2 minimum dimuon mass generation filled the relative difference distribution

from 1000 to 1499 GeV/c2 minimum mass threshold, the 1300 GeV/c2 minimum dimuon mass

from 1500 to 1999 GeV/c2 minimum mass threshold, and the 1800 GeV/c2 minimum dimuon

mass distribution from 2000 to 2399 GeV/c2 minimum mass threshold.

11

Figure 4: Mass plots for 100,000 event generation, minimum dimuon mass 800 GeV/c2. One of three sets

(800 GeV/c2, 1300 GeV/c2, and 1800 GeV/c2). Top Left: Boson mass generated without final state

radiation. Top Right: Dimuon mass generated with final state radiation. Bottom Left: Dimuon mass with

FSR calculated with 5% up-scaling in pT at 1000 GeV/c. Bottom Right: Dimuon mass with FSR

calculated with 5% down-scaling in pT at 1000 GeV/c. Scaling dependent on mass.

12

A quadratic fit was applied to the scaled-up relative difference distribution to make a

parameterization of the fractional difference in entries as a function of minimum mass. The

quadratic fit was chosen to coincide with the Aachen study. This fractional difference can be

taken as the uncertainty in the event count as a function of minimum mass. The fit is applied to

the scaled up graph to account for the worst-case scenario. The fit produced is given as

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑒𝑣𝑒𝑛𝑡𝑠 = 6.90 × 10−3 + 5.03 × 10−5𝑚𝑚𝑖𝑛 + 2.52 × 10−8𝑚𝑚𝑖𝑛
2 .

The parameters and their errors are given in Table 2.

Figure 5: Relative difference plots. Red scaled-up, blue scaled-down, 5% scaling in both.

Scale up features a quadratic fit.

13

Table 2:Fit Parameters

p0 0.00689805 ± 2.29103

p1 5.03351e-05 ± 0.00279879

p2 2.52364e-08 ± 8.18564e-07

5. Conclusions

Knowledge of the effects of pT scaling on the count of mass dependent events is crucial to

our understanding of the uncertainty associated with the search for beyond the standard model

physics. Through Monte Carlo generation and analysis, we have developed a preliminary

parameterization of the uncertainty in the entry count as a function of minimum dimuon mass.

With our scripts, we have constructed the basis to extend the study to incorporate full detector

simulation, to refine the parameterization.

6. Acknowledgements and Thanks

I would like to acknowledge Shawn Zaleski (Wayne State University) for his

EDAnalyzer plugin and Danny Nooman (Florida Institute of Technology) for the addition of

FSR sensitivity. This study would have been much harder without the guidance and motivation

of Graham Stoddard (Northern Illinois University) and the beginner coding assistance from

Shannon Massey (University of Notre Dame). Finally, I want to thank my advisers for their

optimism, and the entire SIST committee for allowing me the chance to work with my heroes.

References

1. L. Taylor, http://cms.web.cern.ch/news/cms-detector-design (2011)

2. https://www.phys.ksu.edu/reu2014/wabehn/index_files/image005.gif

3. G. Abbiendi, https://twiki.cern.ch/twiki/bin/viewauth/CMS/MuonReferenceResolution

4. T. Pook, https://twiki.cern.ch/twiki/bin/viewauth/CMS/AachenADD

5. S. Drell and T. Yan, Phys. Rev. Lett. 25(1970)316, doi: 10.1103/PhysRevLett.25.316

6. S. Malik,

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkbookMoreOnCMSSWFramwwork

(2012)

7. G. Cummings, Inct. Swag. 05(1994)05

8. T. Sjöstrand, S. Mrenna and P. Skands, JHEP05 026

9. T. Sjöstrand et al, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012[hep-ph]]

10. D. Dagenhart,

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideEDMGetDataFromEvent

(2014)

11. Root User’s Manual, https://root.cern.ch/root/htmldoc/guides/users-

guide/ROOTUsersGuideA4.pdf

Appendix I

Derivation of M = 2 pT1 pT2(cosh(η1 - η2) - (cos(ϕ1 - ϕ2)) .

Begin with the four-vector method of calculating invariant mass, and start to simplify, producing

M 2 = p1
μ
+ p2

μ
 p1 μ + p2 μ,

=

E1

px1

py1

pz1

+

E2

px2

py2

pz2

((E1 px1 py1 pz1) + (E2 px2 py2 pz2)),

=

E1 + E2

px1 + px2

py1 + py2

pz1 + pz2

(E1 + E2 px1 + px2 py1 + py2 pz1 + pz2),

= (E1 + E2)
2 - (px1 + px2)

2 - py1 + py2
2
- (pz1 + pz2)

2.

First, we will simplify the momentum terms

-(px1 + px2)
2 - py1 + py2

2
- (pz1 + pz2)

2 =

- px1
2 + 2 px1 px2 + px2

2 - py1
2 + py1 py2 + py2

2 - pz1
2 + pz1 pz2 + pz2

2,

= - px1
2 + py1

2 + pz1
2 - px2

2 + py2
2 + pz2

2 - 2 p1  p2.

Next, we will simplfy the energy term

 (E1 + E2)
2 =  m1

2 + px1
2 + py1

2 + pz1
2 + m2

2 + px2
2 + py2

2 + pz2
2 

2

= m1
2 + px1

2 + py1
2 + pz1

2 +

2 m1
2 + px1

2 + py1
2 + pz1

2 m2
2 + px2

2 + py2
2 + pz2

2 +m2
2 + px2

2 + py2
2 + pz2

2

= m1
2 +m2

2 + px1
2 + py1

2 + pz1
2 + px2

2 + py2
2 + pz2

2 + 2 E1 E2.

Combining the expressions gives

M 2 = (E1 + E2)
2 - (px1 + px2)

2 - py1 + py2
2
- (pz1 + pz2)

2,

= m1
2 +m2

2 + px1
2 + py1

2 + pz1
2 + px2

2 + py2
2 + pz2

2 +

2 E1 E2 - px1
2 + py1

2 + pz1
2 - px2

2 + py2
2 + pz2

2 - 2 p1  p2,

= m1
2 +m2

2 + 2 E1 E2 - 2 p1  p2.

We now can factor out the 2, and since the muon mass is negligible, we can set m1 andm2 equal to 0, giving

M 2 = 2 E1 E2 - p1  p2.

We can simplfy the above expression using the transverse energy, ET , equals ET = px
2 + py

2 +m2. Using the

relation E1 E2 = ET1 ET2 coshη1 coshη2, we get

M 2 = 2 ET1 ET2 coshη1 coshη2 - p1  p2.

Next, simplify the dot product and put it in terms of pT , producing

Printed by Wolfram Mathematica Student Edition

p1  p2 = px1 px2 + py1 py2 + pz1 pz2,

= pT1 cosϕ1 pT2 cosϕ2 + pT1 sinϕ1 pT2 sinϕ2 + E1 sinhη1 E2 sinhη2,

= pT1 pT2cos(ϕ1 - ϕ2) + ET1 ET2 sinhη1 sinhη2.

When substituting back into our expression, we have

M 2 = 2 ET1 ET2 coshη1 coshη2 - p1  p2,

= 2 ET1 ET2 coshη1 coshη2 - pT1 pT2cos(ϕ1 - ϕ2) + ET1 ET2 sinhη1 sinhη2,

= 2 ET1 ET2 coshη1 coshη2 - pT1 pT2cos(ϕ1 - ϕ2) - ET1 ET2 sinhη1 sinhη2.

Using hyperbolic trigonometric identities, we receive

M 2 = 2 ET1 ET2 coshη1 coshη2 - pT1 pT2cos(ϕ1 - ϕ2) - ET1 ET2 sinhη1 sinhη2

= 2 ET1 ET2coshη1 coshη2 - sinhη1 sinhη2 - 2 pT1 pT2cos(ϕ1 - ϕ2),

= 2 ET1 ET2coshη1 coshη2 - sinhη1 sinhη2 - 2 pT1 pT2(cos(ϕ1 - ϕ2),

= 2 ET1 ET2 cosh(η1 - η2) - 2 pT1 pT2(cos(ϕ1 - ϕ2)).

Since the mass of the muon is assumed to be 0, the ET goes to pT , leaving

M 2 = 2 ET1 ET2 cosh(η1 - η2) - 2 pT1 pT2(cos(ϕ1 - ϕ2)),

= 2 pT1 pT2(cosh(η1 - η2) - (cos(ϕ1 - ϕ2)).

Taking the square root,

M = 2 pT1 pT2(cosh(η1 - η2) - (cos(ϕ1 - ϕ2)) .

2 dervation.nb

Printed by Wolfram Mathematica Student Edition

Appendix II

DimuonClass.C

//DimuonClass.C ROOT macro

#define DimuonClass_cxx

#include "DimuonClass.h"

#include <TH1.h>

#include <TStyle.h>

#include <TCanvas.h>

#include <TMath.h>

#include <iostream>

#include <TLorentzVector.h>
#include <TString.h>

#include <TTree.h>

#include <TLegend.h>

#include <TLatex.h>

void DimuonClass::Loop()

{

 if (fChain == 0) return;

 Long64_t nentries = fChain->GetEntriesFast();

 Long64_t nbytes = 0, nb = 0;

 //The File

 TFile *fl = new TFile("outputfilename.root","NEW");

 //The Canvas

 TCanvas *c6 = new TCanvas("c6","Relative Diffference, Arrays",25,33,700,400);

 c6->Divide(1,1);

 TCanvas *c8 = new TCanvas("c8","Mass Graphs",23,33,1400,900);

 c8->Divide(2,2);

 TCanvas *c9 = new TCanvas("c9","PT Difference",33,50,700,400);

 c9->Divide(1,1);

 //Canvas for z

 TCanvas *c10 = new TCanvas("c10","Mass vs. Massup",33,50,700,400);

 c10->Divide(1,1);

 //Create Histogram for Zmass

 Int_t range = 3000;

 Int_t step = 20;

 Int_t lowestcut = 1000;

 Int_t bins = range/step;

 Int_t lowthreshbin = lowestcut/step+1;

 Int_t binsrel = (2400-lowestcut)/step;

 TH1F *defaultmass = new TH1F("defaultmass","Dimuon Invariant Mass

Spectrum",bins,0,range);//FSR

 defaultmass->GetXaxis()->SetTitle("mass GeV");

 defaultmass->GetYaxis()->SetTitle("entries per GeV");

 defaultmass->GetYaxis()->SetTitleOffset(1.5);

 defaultmass->SetLineColor(kBlue);

 defaultmass->SetFillColor(kBlue);

 TH1F *bosonmass = new TH1F("bosonmass","True mass",bins,0,range);//no FSR

 bosonmass->GetXaxis()->SetTitle("mass GeV");

 bosonmass->GetYaxis()->SetTitle("entries per GeV");

 bosonmass->GetYaxis()->SetTitleOffset(1.5);

 TH1F *massup = new TH1F("massup","Mass calculated with scaled-up P_{T}, 5% scaling at

1000 GeV",bins,0,range);

 massup->GetXaxis()->SetTitle("mass GeV");

 massup->GetYaxis()->SetTitle("entries per GeV");

 massup->GetYaxis()->SetTitleOffset(1.5);

 massup->SetLineColor(kRed);

 massup->SetFillColor(kRed);

 TH1F *massdn = new TH1F("massdn", "Mass calculated with scaled-down P_{T}, 5% scaling at

1000 GeV",bins,0,range);

 massdn->GetXaxis()->SetTitle("mass GeV");

 massdn->GetYaxis()->SetTitle("entries per GeV");

 massdn->GetYaxis()->SetTitleOffset(1.5);

 TH1F *arrayrelup = new TH1F("arrayrelup","Relative difference in scaled-up 5%

P_{T}",binsrel,1000,2400);

 arrayrelup->SetLineColor(kRed);

 arrayrelup->SetStats(kFALSE);

 arrayrelup->GetXaxis()->SetTitle("Lower mass threshold in GeV");

 arrayrelup->GetYaxis()->SetTitle("Relative Difference in P_{T}");

 arrayrelup->GetYaxis()->SetTitleOffset(1.5);

 TH1F *arrayreldn= new TH1F("arrayreldn","Relative difference in scaled-down 5%

pt",binsrel,1000,2400);

 arrayreldn->SetLineColor(kAzure);

 arrayreldn->SetStats(kFALSE);

 arrayreldn->GetXaxis()->SetTitle("Lower mass threshold in GeV");

 arrayreldn->GetYaxis()->SetTitle("Relative Difference in pt");

 arrayreldn->GetYaxis()->SetTitleOffset(1.5);

 TH1F *ptup = new TH1F("ptup", "P_{T} of muon 1, 800 minimum mass",100,0,1200);

 ptup->SetLineColor(kRed);

 ptup->GetXaxis()->SetTitle("P_{T}, GeV");

 ptup->GetYaxis()->SetTitle("entires per bin");

 ptup->SetStats(kFALSE);

 TH1F *ptdn = new TH1F("ptdn", "P_{T} of muon 1, 800 minimum mass",100,0,1200);

 ptdn->SetLineColor(kAzure);

 ptdn->GetXaxis()->SetTitle("P_{T}, GeV");

 ptdn->GetYaxis()->SetTitle("entires per bin");

 ptdn->SetStats(kFALSE);\

 TH1F *ptmuon1 = new TH1F("ptmuon1", "pt, muon 1",100,0,1200);

 ptup->GetXaxis()->SetTitle("P_{T}, GeV");

 ptup->GetYaxis()->SetTitle("entires per bin");

 ptup->SetStats(kFALSE);

 //Loop for tree

 for (Long64_t jentry=0; jentry<nentries;jentry++) {

 Long64_t ientry = LoadTree(jentry);

 if (ientry < 0) break;

 nb = fChain->GetEntry(jentry); nbytes += nb;

 // if (Cut(ientry) < 0) continue;

 //pt multiplying factor

 Float_t momtmu1 = decay1P4_pt;

 Float_t mu1ptup = momtmu1*(1.0+.05*(momtmu1/1000.0));

 Float_t mu1ptdn = momtmu1*(1.0-.05*(momtmu1/1000.0));

 Float_t momtmu2 = decay2P4_pt;

 Float_t mu2ptup = momtmu2*(1.0+.05*(momtmu2/1000.0));

 Float_t mu2ptdn = momtmu2*(1.0-.05*(momtmu2/1000.0));

 Float_t imup = TMath::Sqrt(2*mu1ptup*mu2ptup*(TMath::CosH(decay1P4_eta-

decay2P4_eta)-TMath::Cos(decay1P4_phi-decay2P4_phi)));//mass pt up

 Float_t imdn = TMath::Sqrt(2*mu1ptdn*mu2ptdn*(TMath::CosH(decay1P4_eta-

decay2P4_eta)-TMath::Cos(decay1P4_phi-decay2P4_phi)));//mass w/ pt dn

 Float_t mass = TMath::Sqrt(2*momtmu1*momtmu2*(TMath::CosH(decay1P4_eta-

decay2P4_eta)-TMath::Cos(decay1P4_phi-decay2P4_phi)));//true invariant masszx

 //Fill Z Histogram

 massup->Fill(imup);

 massdn->Fill(imdn);

 defaultmass->Fill(mass);

 ptup->Fill(mu1ptup);

 ptdn->Fill(mu1ptdn);

 ptmuon1->Fill(decay1P4_pt);

 bosonmass->Fill(bosonP4_mass);

 }

 //Arrays for relative difference analysis

 Double_t massdefault[binsrel];

 Double_t upmass[binsrel];

 Double_t dnmass[binsrel];

 Float_t upreldiff[binsrel];

 Float_t dnreldiff[binsrel];

 for (Int_t i = 0; i<binsrel; i++)

 {

 massdefault[i]=defaultmass->Integral(i+lowthreshbin,bins);

 upmass[i]=massup->Integral(i+lowthreshbin,bins);

 dnmass[i]=massdn->Integral(i+lowthreshbin,bins);

 upreldiff[i]=((upmass[i]-massdefault[i])/massdefault[i]);

 dnreldiff[i]=((dnmass[i]-massdefault[i])/massdefault[i]);

 arrayrelup->AddBinContent(i+1,upreldiff[i]);

 arrayreldn->AddBinContent(i+1,TMath::Abs(dnreldiff[i]));

 }

 TLegend *leg = new TLegend(0.16,0.63,0.45,0.91);

 leg->AddEntry(arrayrelup, "Scaled-up","l");

 leg->AddEntry(arrayreldn, "Scaled-down","l");

 TLegend *leg1 = new TLegend(0.75,0.75,0.95,0.95);

 leg1->AddEntry(ptmuon1,"true P_{T}","l");

 leg1->AddEntry(ptup,"P_{T}, scaled-up 5%","l");

 leg1->AddEntry(ptdn,"P_{T}, scaled-down 5%","l");

 //Draw

 c6->cd(1);

 arrayrelup->Draw();

 arrayreldn->Draw("SAME");

 leg->Draw();

 c9->cd(1);

 ptdn->Draw();

 ptmuon1->Draw("SAME");

 ptup->Draw("SAME");

 leg1->Draw();

 c10->cd(1);

 massup->Draw();

 defaultmass->Draw("SAME");

 c10->Write();

 //Draw

 c8->cd(1);

 bosonmass->Draw();

 c8->cd(2);

 defaultmass->Draw();

 c8->cd(3);

 massup->Draw();

 c8->cd(4);

 massdn->Draw();

 //c6->Write();

 bosonmass->Write();

 c8->Write();

 massup->Write();

 massdn->Write();

 defaultmass->Write();

 ptup->Write();

 ptdn->Write();

 ptmuon1->Write();

 arrayrelup->Write();

 arrayreldn->Write();

 c9->Write();

}

DimuonClass.h

//DimuonClass.h

//

// This class has been automatically generated on

// Mon Jul 13 14:04:41 2015 by ROOT version 6.02/05

// from TTree pdfTree/PDF Tree

// found on file: DYoutput_cut.root

//

#ifndef DimuonClass_h

#define DimuonClass_h

#include <TROOT.h>

#include <TChain.h>

#include <TFile.h>

#include <TH1.h>

 // Header file for the classes stored in the TTree if any.

class DimuonClass {

public :

 TTree *fChain; //!pointer to the analyzed TTree or TChain

 Int_t fCurrent; //!current Tree number in a TChain

// Fixed size dimensions of array or collections stored in the TTree if any.

 // Declaration of leaf types

 Float_t bosonP4_energy;

 Float_t bosonP4_et;

 Float_t bosonP4_eta;

 Float_t bosonP4_phi;

 Float_t bosonP4_pt;

 Float_t bosonP4_mass;

 Float_t bosonP4_theta;

 Float_t decay1P4_energy;

 Float_t decay1P4_et;

 Float_t decay1P4_eta;

 Float_t decay1P4_phi;

 Float_t decay1P4_pt;

 Float_t decay1P4_mass;

 Float_t decay1P4_theta;

 Float_t decay2P4_energy;

 Float_t decay2P4_et;

 Float_t decay2P4_eta;

 Float_t decay2P4_phi;

 Float_t decay2P4_pt;

 Float_t decay2P4_mass;

 Float_t decay2P4_theta;

 Int_t decay1PID;

 Int_t decay2PID;

 Int_t bosonPID;

 // List of branches

 TBranch *b_bosonP4; //!

 TBranch *b_decay1P4; //!

 TBranch *b_decay2P4; //!

 TBranch *b_decay1PID; //!

 TBranch *b_decay2PID; //!

 TBranch *b_bosonPID; //!

 DimuonClass(TTree *tree=0);

 virtual ~DimuonClass();

 virtual Int_t Cut(Long64_t entry);

 virtual Int_t GetEntry(Long64_t entry);

 virtual Long64_t LoadTree(Long64_t entry);

 virtual void Init(TTree *tree);

 virtual void Loop();

 virtual Bool_t Notify();

 virtual void Show(Long64_t entry = -1);

};

#endif

#ifdef DimuonClass_cxx

DimuonClass::DimuonClass(TTree *tree) : fChain(0)

{

// if parameter tree is not specified (or zero), connect the file

// used to generate this class and read the Tree.

 if (tree == 0) {

 TFile *f = (TFile*)gROOT->GetListOfFiles()->FindObject("ntuple.root");

 if (!f || !f->IsOpen()) {

 f = new TFile("ntuple.root");

 }

 TDirectory * dir = (TDirectory*)f->Get("ntuple.root");

 dir->GetObject("pdfTree",tree);

 }

 Init(tree);

}

DimuonClass::~DimuonClass()

{

 if (!fChain) return;

 delete fChain->GetCurrentFile();

}

Int_t DimuonClass::GetEntry(Long64_t entry)

{

// Read contents of entry.

 if (!fChain) return 0;

 return fChain->GetEntry(entry);

}

Long64_t DimuonClass::LoadTree(Long64_t entry)

{

// Set the environment to read one entry

 if (!fChain) return -5;

 Long64_t centry = fChain->LoadTree(entry);

 if (centry < 0) return centry;

 if (fChain->GetTreeNumber() != fCurrent) {

 fCurrent = fChain->GetTreeNumber();

 Notify();

 }

 return centry;

}

void DimuonClass::Init(TTree *tree)

{

 // The Init() function is called when the selector needs to initialize

 // a new tree or chain. Typically here the branch addresses and branch

 // pointers of the tree will be set.

 // It is normally not necessary to make changes to the generated

 // code, but the routine can be extended by the user if needed.

 // Init() will be called many times when running on PROOF

 // (once per file to be processed).

 // Set branch addresses and branch pointers

 if (!tree) return;

 fChain = tree;

 fCurrent = -1;

 fChain->SetMakeClass(1);

 fChain->SetBranchAddress("bosonP4", &bosonP4_energy, &b_bosonP4);

 fChain->SetBranchAddress("decay1P4", &decay1P4_energy, &b_decay1P4);

 fChain->SetBranchAddress("decay2P4", &decay2P4_energy, &b_decay2P4);

 fChain->SetBranchAddress("decay1PID", &decay1PID, &b_decay1PID);

 fChain->SetBranchAddress("decay2PID", &decay2PID, &b_decay2PID);

 fChain->SetBranchAddress("bosonPID", &bosonPID, &b_bosonPID);

 Notify();

}

Bool_t DimuonClass::Notify()

{

 // The Notify() function is called when a new file is opened. This

 // can be either for a new TTree in a TChain or when when a new TTree

 // is started when using PROOF. It is normally not necessary to make changes

 // to the generated code, but the routine can be extended by the

 // user if needed. The return value is currently not used.

 return kTRUE;

}

void DimuonClass::Show(Long64_t entry)

{

// Print contents of entry.

// If entry is not specified, print current entry

 if (!fChain) return;

 fChain->Show(entry);

}

Int_t DimuonClass::Cut(Long64_t entry)

{

// This function may be called from Loop.

// returns 1 if entry is accepted.

// returns -1 otherwise.

 return 1;

}

#endif // #ifdef DimuonClass_cxx

runDimuonClass.C

//runDimuonClass.C

#include "DimuonClass.C"

void runDimuonClass()

{

 TChain *chain = new TChain("Dimuon/pdfTree","");

 chain->Add("ntuple.root");

 DimuonClass _DimuonClass(chain);

 _DimuonClass.Loop();

}

Mergereldiff.C, program to merge relative difference histograms produced by the DimuonClass macros

//mergereldiff.C

{

 Int_t step = 20;

 Int_t lowestcut = 1000;

 Int_t range = 2400;

 Int_t cut1 = 1500;

 Int_t cut2 = 2000;

 Int_t cut3 = 2400;

 Int_t bins = (range-lowestcut)/step;

TH1F *hd = new TH1F("hd","Relative Difference, 5% at 1000 GeV

Scaling",bins,lowestcut,range);

hd->SetStats(kFALSE);

 hd->GetXaxis()->SetTitle("lower mass threshold, GeV");

 hd->GetYaxis()->SetTitle("relative difference");

 hd->GetYaxis()->SetTitleOffset(1.5);

 hd->SetMaximum(0.24);

TH1F *hu = new TH1F("hu","Relative Difference",bins,lowestcut,range);

 hu->SetLineColor(kRed);

 hu->SetStats(kFALSE);

 hu->SetMaximum(0.24);

TFile f800("rebintest800_scaledby5perc.root");

TH1F *h800up = (TH1F*)gDirectory->Get("arrayrelup");

TH1F *h800dn = (TH1F*)gDirectory->Get("arrayreldn");

TFile f1300("rebintest1300_scaledby5perc.root");

TH1F *h1300up = (TH1F*)gDirectory->Get("arrayrelup");

TH1F *h1300dn = (TH1F*)gDirectory->Get("arrayreldn");

TFile f1800("rebintest1800_scaledby5perc.root");

TH1F *h1800up = (TH1F*)gDirectory->Get("arrayrelup");

TH1F *h1800dn = (TH1F*)gDirectory->Get("arrayreldn");

TLegend *leg = new TLegend(0.16,0.63,0.45,0.91);

 leg->AddEntry(h800up, "Scaled-up","l");

 leg->AddEntry(h800dn, "Scaled-down","l");

 for (Int_t i = 1;i<=bins; i++)

 {

 if(i<=((cut1-lowestcut)/step)){

 hd->AddBinContent(i,h800dn->GetBinContent(i));

 hu->AddBinContent(i,h800up->GetBinContent(i));

 }

 else if (i<=((cut2-lowestcut)/step)){

 hd->AddBinContent(i,h1300dn->GetBinContent(i));

 hu->AddBinContent(i,h1300up->GetBinContent(i));

 }

 else if (i<=((cut3-lowestcut)/step)) {

 hd->AddBinContent(i,h1800dn->GetBinContent(i));

 hu->AddBinContent(i,h1800up->GetBinContent(i));

 }

 }

TCanvas *c9 = new TCanvas("MyCanvas","Merged Hists",700,500);

 hd->Draw();

 hu->Draw("SAME");

 leg->Draw();

TFile *fnew = new TFile("mergedanalysis.root","NEW");

/

 c9->Write();

}

