DUNE THREE HORN DESIGN STUDY

Brendon Bullard

PURPOSE

• Benchmarking G4LBNE/V2 and V3

- Want to study focusing performance for a three horn system based off the optimized design
- Investigate the tunability of this design through the repositioning of Horn 2

PROCEDURE

- 50m POT in V2/V3 for reference design and optimized design at 66 and 120 GeV
- 50m POT in V2 for three horn design at 0.5, 2.0,
 4.0, and 6.0 m separation between Horn 1 and Horn 2
- Visualization in HepRep (use 50 POT)

REFERENCE DESIGN HORNS

	Upstr	eam	Neck	Downstream			
Z(cm)	0-44.047	44.047-80.	8083.982	83.982-95.128	95.128-300	. 300354.4	
$R_{in}^{IC}(\mathrm{cm})$	$\sqrt{\frac{92.8484-z}{7.0483}} - 0$	$0.2 \sqrt{\frac{85.7091-z}{7.0483}}$	0.90	$\sqrt{\frac{z-82.2123}{2.1850}}$	$\sqrt{\frac{z-80.}{2.1850}} - 0.$.2 9.83	
$R_{out}^{IC}({\rm cm})$	$\sqrt{\frac{92.8}{7.0}}$	$\frac{484-z}{0483}$	1.35	$\sqrt{\frac{z}{2.}}$	$\frac{-80}{1850}$	10.03	
$R_{in}^{OC}(\mathrm{cm})$	_	_	15.33	_	_	_	
$R_{out}^{OC}({\rm cm})$			16.20			_	
	Upstream		Neck	Neck Downstream			
	$\mathrm{Z(cm)}$	0-97.617	97.617-104.8	03 104.803-300.	300354.4		
	$R_{in}^{IC}(\mathrm{cm})$	$\sqrt{\frac{100-z}{0.1351}} - 0.3$	3.90	$\sqrt{rac{z-100}{0.2723}} - 0.3$	26.80		
	$R_{out}^{IC}(\mathrm{cm})$	$\sqrt{\frac{100-z}{0.1351}}$	4.40	$\sqrt{\frac{z-100}{0.2723}}$	27.10		
	$R_{in}^{OC}(\mathrm{cm})$	-	37.0	-	_		
	$R_{out}^{OC}(\mathrm{cm})$	-	37.87	_	_		

Reference and Optimized Designs

Parameter	Reference	Optimized			
$R_1(\text{mm})$ (Horn 1)	_	37.6	Longitudinal Scale (Horn 2)	1	1.32
$R_2(\text{mm})$ (Horn 1)	_	162.1	Radial Scale (Horn 2)	1	1.78
$R_3(\text{mm})$ (Horn 1)	_	54.5	Radial Scale Constant (m) (Horn 2)	0	7.612
$R_4(\text{mm})$ (Horn 1)	_	166.8	Longitudinal Position (m) (Horn 2)	6.61	14.5
$R_{out}^{OC}(\text{mm})$ (Horn 1)	162	670	Target Length (m)	0.95	2.37
$L_1(\text{mm})$ (Horn 1)	_	1811.6	Target Longitudinal Position (m)	-0.42	0.1
$L_2(\text{mm})$ (Horn 1)	_	796.0	Proton Energy (GeV)	120	66
$L_3(\text{mm})$ (Horn 1)	_	593.8	Horn Current (kA)	230	298
$L_4(\text{mm})$ (Horn 1)	_	676.0			
$L_5(\text{mm})$ (Horn 1)	_	140.0	For		
$L_6(\text{mm})$ (Horn 1)	_	524.9			
$L_7(\text{mm})$ (Horn 1)	_	997.0		r ₃ ↓	
Longitudinal Position (m) (Horn 1)	0	0		L5	

L4

L₃

L₆

 L_7

REFERENCE DESIGN: Π + (1-10 GeV)

Optimized Design: Π + (1-10 GeV)

REFERENCE DESIGN

Reference Design

REFERENCE DESIGN

Reference Design

OPTIMIZED DESIGN

Optimized Design

Neutrino Flux Ratio (v2/v3)

OPTIMIZED DESIGN

Optimized Design

Neutrino Flux Ratio (v2/v3)

OBSERVATIONS

- Verify that optimized design outperforms reference
- V3 has overall lower flux due to the more accurate use of beamline components
- V3 low energy bins are higher because V2 has automatic low energy cuts

THREE HORN DESIGN

• Same beam specifications as optimized design, except Horn 1 is cut between L₃ and L₄

VISUALIZATION OF THREE HORN DESIGN

0.5 METER SEPARATION

Three Horn Design (0.5m Separation) G4LBNE/V2

Neutrino Flux Ratio (3 Horns)/(Optimized) in V2

THREE HORN (ALL SEPARATION LENGTHS)

Muon Neutrino Flux in G4LBNE/V2

CONCLUSIONS

- The 0.5 m separation design yields comparable neutrino flux to the optimized design - a three horn design can be found that has equal or better flux
- Simply moving the location of Horn 2 doesn't give quality tuning. Likely will be the case for other Horn 2 OC radii

FUTURE WORK

- Study anti muon neutrino beam
- Implement three horn design in G4LBNE/V3
- Use a genetic algorithm to optimize the three horn geometry – Horn 2 OC radius and separation distance increase complexity by 2 degrees of freedom

END