Introduction to Wire-Cell 3D Reconstruction

Chao Zhang BNL

TPC vs. Tomography

- As electrons drift toward APA, they represent tomographic cross sections at each time slice
- Combining the reconstructed images on the time slices results in the full 3D object

Fig.1: Basic principle of tomography: superposition free tomographic cross sections S1 and S2 compared with the projected image P

https://en.wikipedia.org/wiki/Tomography

Challenges in Tomographic Reconstruction

- The tomographic view seems to be natural way to do 3D reconstruction
 - Many people thought about it, but gave up eventually
- The challenge comes from the wire readout (compared with the pad pixel readout)
 - Wire readout is necessary to reduce cost
 - However the measured information is reduced from N² (pixels) to 3N (wires)
 - Information lost -> exponential degeneracy -> give up

An Illustration

Fake hits when there are many hits at fixed time

Degeneracy increase exponentially with number of hits

Need additional information to reduce degeneracy

New Input From Charge Information

Same charge in a voxel is measured 3 times by wires on the three wire planes

- Assumption: charge calibrations are good on all three wire planes
- Write down the charge matrix equations
 - If equations can be solved, fake charge will be close to zero

Example: a 1.5 GeV electron

Use geometry and charge information

rec_charge

"Wire-Cell" Reconstruction

- 1) Form time slices
- 2) Construct Wire-Cell association
- 3) Merge adjacent cells into "blobs"
- 4) Construct χ^2 through matrix equations
- 5) χ2 minimization
- 6) Obtain best matched 3D space points

In Wire-Cell reconstruction, we don't use the traditional concept of "Gaussian Hits".

 Avoids the complications in fitting the waveform (especially for a long signal)

Instead, we simply define a time slice as a 2-us bin

- Binning choice matches the shaping time
- Charge in a time slice on a wire is the sum of its deconvoluted signals

Wires, Cells and Blobs

- Wire: a Wire represents a +- pitch/2 rectangular region centered around the wire
- Cell: a Cell is the overlap region of three Wires. This is the smallest area unit on a plane.
- Blob: group of hit cells that are adjacent
 - Merge cells into blob to reduce degeneracy

$\chi^{2} = (B \cdot W - G \cdot C)^{T} V_{BW}^{-1} (B \cdot W - G \cdot C)$ $\frac{\partial \chi^{2}}{\partial C} = 0 \rightarrow G^{T} V_{BW}^{-1} (BW - GC) + (BW - GC)^{T} V_{BW}^{-1} G = 0$ $G^{T} V_{BW}^{-1} BW + W^{T} B^{T} V_{BW}^{-1} G = G^{T} V_{BW}^{-1} GC + C^{T} G^{T} V_{BW}^{-1} G$ $C = (G^{T} V_{BW}^{-1} G)^{-1} G^{T} V_{BW}^{-1} BW$

- □ C: charge in each (merged) cell (to be solved)
- G: Geometry matrix connecting cells and wires
- □ W: charge in each single wire
- B: Geometry matrix connecting merged wires and single wires
- □ V_{BW}: Covariance matrix describing uncertainty in wire charge

When equations can not be solved

- □ When the matrix $G^T V_{BW}^{-1} G$ can not be inverted, it must contain more than one zero eigenvalues
 - Often an indication of more unknowns than constraints
 - Need to find the "best" solution
- One hypothesis is to eliminate certain number of "Blobs" (i.e. unknowns) so that the updated matrix can be solved
 - Assume number of real cells are smaller than the constraints
 - Assume smaller χ^2 representing situation closer to the truth
 - Try all combinations and find the minimum χ^2
 - Degeneracy scales exponentially with number of possible cells
 - The key is to develop algorithms to improve the speed and accuracy: Iterative, MCMC, Time ...

Comparison With Tradition Reconstruction

- Start with "time" Information
- Do clustering and tracking in the three
 2D time-wire planes
- Match the three 2D views to obtain the 3D space points
- Use 3D space points and the charge on wires to do physics

- Start with "charge" Information
- Obtain 3D space points (with charge) by solving equations in the 2D tomographic plane
- Do clustering and tracking in 3D directly
- Use time/tracking information to iteratively improve equation solving
 Do physics

The Wire-Cell Homepage http://www.phy.bnl.gov/wire-cell/

Software

- This is an external software package outside of LArSoft
 - https://github.com/BNLIF/ wire-cell/
- Maintained by Brett Viren
- Interface with LArSoft in development

14

The "Bee" Event Display

We've made a web-based event display to help

- Developers: compare the performance of different reconstruction algorithms
- Users: eye san various events to gain intuitions of different interactions in LAr
- □ List of simulated event sets:
 - <u>http://www.phy.bnl.gov/wire-cell/examples/list/</u>
 - Currently, all are using the microboone single TPC geometry.
 - There are some 3 GeV events (numu-cc, numu-nc, nuecc) that we made to get familiar with DUNE-type events

The "Bee" Event Display

Developed with WebGL via the three.js library <u>http://threejs.org</u>

- Runs everywhere with a modern browser (Chrome, Firefox, Safari, IE11+, etc. <u>http://caniuse.com/#feat=webgl</u>)
- A good discrete GPU helps

	Mouse / Keyboard	Touch
Rotate	Drag with left button	One finger touch
Zoom	Mouse wheels	Pinch & zoom / two finger scroll
Pan	Drag with right button / arrow keys	Three finger swipe

slice #: 0 | slice

To-do List

- Add capability of wrapped wire, multiple TPCs, and parametrized TPC
- Study disambiguity
- Study TPC optimization
- Implementing interface with LArSoft
- Improve the clustering and tracking
- Improve the equationsolving algorithms

