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Method

Wire Cell Gestalt
1 Tile the wire plane with “cells”, each associated

with one wire from each plane.

2 Focus on a time-slice across the readout channels
(nominally 4 ticks).

3 Determine which cells may contain charge
consistent with the sliced readout for their wires.

4 Merge potential hit cells into “blobs” to reduce
multiplicity.

5 Attempt to solve a wire-cell association matrix via
χ2 minimization.

6 Associate solution back in time to drift origin to
form 3D point.

7 Clustering, PID, Physics!

For more information, see:

• Chao Zhang’s presentation to 35t/FD Sim, Reco, and Analysis.

• A detailed paper is in preparation.

Brett Viren (BNL) Wire Cell August 11, 2015 3 / 15

https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=10240


Method

Wire Cell Example Solution, 1.5 GeV e−

MC depositions. Only geometry Geometry and charge.
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Wire Cell Software

Wire Cell Software Ecosystem

Consists roughly of these parts:

bee 3D interactive web-based event display.
core C++ libraries providing:

• data and geometry representations.
• the reconstruction procedures themselves.
• charge drifting and signal processing.
• various data/geometry file I/O.
• job configuration and a processing model.

misc file-based data exchange with LArSoft, stand-alone
signal processing studies, experimental clustering,
bee file server, some others.
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Wire Cell Software

Bee

http://www.phy.bnl.gov/wire-cell/examples/mvd/numu-nc-v2/#/99

• 3D, interactive, web-browser interface using WebGL acceleration.
• Display MC truth, WC and other reconstruction results, simple JSON file format.
• Server side file organization and JS delivery based on Django.
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Wire Cell Software

Wire Cell Source Code Repositories

The Bee display:

• wire-cell-viz-webgl repository.

• Primary developer: Chao.

Wire Cell “core” repositories have two active branches:

master working prototype code producing the results we’ve been
showing, (primary: Xin).

ifaceio fork of master, for structured, production code for long term
development, tuning and toward supporting parallel
architectures, (primary: bv).

Focus on Wire Cell “core” parts next →
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https://github.com/BNLIF/wire-cell-viz-webgl


Wire Cell Software

Installation of Wire Cell “core”

Primary dependencies (subject to change):
build: C++11 compiler (GCC 4.9.2 used)
core: Boost (1.55)

apps/tests: ROOT 6 (6.05/01)

Some build details:
• Source packages aggregated via git submodules

• Native build system: waf (self-contained copy provided).
• Unit and integration tests run regularly as part of the build.
• Installs shared libraries + headers + few main applications.

Details at http://bnlif.github.io/wire-cell-docs/install/.
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https://waf.io/
http://bnlif.github.io/wire-cell-docs/install/


Wire Cell Software

Wire Cell “core” Packages Overview
Wire Cell core packages, most named like wire-cell-*:

wire-cell git submodule aggregation and top-level build-package,
(master, ifaceio).

-data common, concrete data classes, (master).

-2dtoy working prototype implementation, (master).

-util general utility code, 3D vector, system of units, configuration
files, various C++ patterns, (ifaceio).

-iface interface classes for major components and data classes,
(ifaceio).

-nav default implementation of wire cell components with minimal
outside dependencies, (master, ifaceio).

-rio internal ROOT I/O persistency, (ifaceio).

-sst “simple simulation tree” file-interface to use LArSoft data and
geometry as one possible input to Wire Cell, (master, ifaceio).

waf-tools waf support files for the native build system, (master, ifaceio).

All found at https://github.com/BNLIF/.
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https://github.com/BNLIF/wire-cell/tree/ifaceio/
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Wire Cell Software

Wire Cell Class Interfaces

• All important Wire Cell classes (in ifaceio) inherit from abstract base
classes following Interface patterns.

• Interface methods take POD or Interfaces.

• Code is in the wire-cell-iface package.

• std::shared_ptr<> memory ownership rules,

Two main categories of interfaces:

data (eg, ICell, ISlice)

• Data is const once created.
• Abstract iterator interface for collections.

component (eg, IConfigurable, IWireSummary, ITiling)

• Interface defines a facet of functionality.
• Name-based location/construction to support job

configuration and loosely coupled build dependencies.
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Wire Cell Software

Data Flow Programming Paradigm

Wire Cell supports the “data flow
programming” paradigm.

• Components are written to provide well
formed “sockets” (methods) connected
to accepting “signals”.

• Connections prototypes are
standardized based on purpose.

• Execution model is synchronous “pull”.

• Potential for fine-grained parallel
execution model with no component
code changes.

• Now, connections formed in C++ but this
will be exported to the end-user
configuration layer.

sst_depo

depo_fanin

depo_fanout

sig_depo bkg_depo

driftU driftV driftW

paramwires

wire_sequence

wire_summary

sstwires

digitizeU digitizeV digitizeW

cell_sequence frame_fanin

slicertiling

cell_charge_binner

cell_merger

blob_sequence

blob_solver
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Connections with LArSoft

Current Wire Cell / LArSoft Integration
• Wire Cell (core) is wholly independent from LArSoft.
• Stand-alone deposition, drifting, digitizing, etc provided.
• Deposition/digit/geometry input from other simulations

possible.

Existing LArSoft integration is via exchange files:
• The celltree LArSoft module, (Chao).
• Produces a plain ROOT TTree with (hits, digits) and dumps

wire geometry (as text).
• Independent from Wire Cell software.
• Not committed, needs a LArSoft package to call home

(suggestions?).
• Module is not specific to one LArSoft-supported detector.
• Files read in by wire-cell-sst package.

• A module to read back Wire Cell output file into to LArSoft is
in development.
→ Need new charge+point data product in LArSoft! In

mean time, will try to populate closest suitable data
products.

Wire Cell / LArsoft Integration By Files

Wire Cell Mainline

params

depositions

wires drift

digitize

readout

hit_cells

blobs

points

cluster

celltreepid

cells

larsoft

celltree

larsoft
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Connections with LArSoft

Future Wire Cell / LArSoft Integration
Main technical challenges:

• Both Wire Cell and LArSoft require a large amount of memory.
• We expect Wire Cell to be a significant CPU bottleneck

Our strategy is to make Wire Cell run in fine-grained parallel.
• Parallel at the time slice or even the lower “blob” level.
• Possible GPU acceleration, possible HPC utilization.
• Further integration with LArSoft must be understood is in this context.

Options:

• Maybe employ ATLAS Event Service approach (actual or DIY)?
• Need to understand how LArSoft “mothership” communicates to many

instances of Wire Cell.

• Enact parallel compute units in the data flow programming paradigm?
• Need parallel execution framework (exists but needs testing)

In any case, let’s start by developing a “LarWireCell” module:

• Wire Cell (core) remains LArSoft “external” and needs UPS packaging.
• Mimic Pandora’s integration patterns.

• A LArSoft module needs to convert between data representations and all Wire Cell
methods.

• I hope a LArSoft expert is interested in helping with this!
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Summary

• A working prototype clearly shows the power of the Wire
Cell technique.

• A code-refactoring is in progress to provide needed
structure going forward.

• Initial samples of 1000s of events have been processed and
are available via the Bee online event display.

Future directions:
• Expert help needed to improve integration with LArSoft!
• Capture existing file-based integration methods into some

LArSoft package.
• Explore how to tackle significant technical challenges

driven by the expected high CPU requirements and in the
face of memory pressures from both LArSoft and Wire Cell.
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Online Entry Points for More Info

The Wire Cell home page collects all info:

http://www.phy.bnl.gov/wire-cell/

Including links to:
• Bee online 3d event display
• Software documentation
• Software repositories
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