
Wire Cell Software Overview and Status

Brett Viren
Physics Department

BNLIF Wire Cell Team
2015 Aug 11



Outline

Method

Wire Cell Software

Connections with LArSoft

Brett Viren (BNL) Wire Cell August 11, 2015 2 / 15



Method

Wire Cell Gestalt
1 Tile the wire plane with “cells”, each associated

with one wire from each plane.

2 Focus on a time-slice across the readout channels
(nominally 4 ticks).

3 Determine which cells may contain charge
consistent with the sliced readout for their wires.

4 Merge potential hit cells into “blobs” to reduce
multiplicity.

5 Attempt to solve a wire-cell association matrix via
χ2 minimization.

6 Associate solution back in time to drift origin to
form 3D point.

7 Clustering, PID, Physics!

For more information, see:

• Chao Zhang’s presentation to 35t/FD Sim, Reco, and Analysis.

• A detailed paper is in preparation.

Brett Viren (BNL) Wire Cell August 11, 2015 3 / 15

https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=10240


Method

Wire Cell Example Solution, 1.5 GeV e−

MC depositions. Only geometry Geometry and charge.

Brett Viren (BNL) Wire Cell August 11, 2015 4 / 15



Wire Cell Software

Wire Cell Software Ecosystem

Consists roughly of these parts:

bee 3D interactive web-based event display.
core C++ libraries providing:

• data and geometry representations.
• the reconstruction procedures themselves.
• charge drifting and signal processing.
• various data/geometry file I/O.
• job configuration and a processing model.

misc file-based data exchange with LArSoft, stand-alone
signal processing studies, experimental clustering,
bee file server, some others.

Brett Viren (BNL) Wire Cell August 11, 2015 5 / 15



Wire Cell Software

Bee

http://www.phy.bnl.gov/wire-cell/examples/mvd/numu-nc-v2/#/99

• 3D, interactive, web-browser interface using WebGL acceleration.
• Display MC truth, WC and other reconstruction results, simple JSON file format.
• Server side file organization and JS delivery based on Django.

Brett Viren (BNL) Wire Cell August 11, 2015 6 / 15

http://www.phy.bnl.gov/wire-cell/examples/mvd/numu-nc-v2/#/99


Wire Cell Software

Wire Cell Source Code Repositories

The Bee display:

• wire-cell-viz-webgl repository.

• Primary developer: Chao.

Wire Cell “core” repositories have two active branches:

master working prototype code producing the results we’ve been
showing, (primary: Xin).

ifaceio fork of master, for structured, production code for long term
development, tuning and toward supporting parallel
architectures, (primary: bv).

Focus on Wire Cell “core” parts next →

Brett Viren (BNL) Wire Cell August 11, 2015 7 / 15

https://github.com/BNLIF/wire-cell-viz-webgl


Wire Cell Software

Installation of Wire Cell “core”

Primary dependencies (subject to change):
build: C++11 compiler (GCC 4.9.2 used)
core: Boost (1.55)

apps/tests: ROOT 6 (6.05/01)

Some build details:
• Source packages aggregated via git submodules

• Native build system: waf (self-contained copy provided).
• Unit and integration tests run regularly as part of the build.
• Installs shared libraries + headers + few main applications.

Details at http://bnlif.github.io/wire-cell-docs/install/.

Brett Viren (BNL) Wire Cell August 11, 2015 8 / 15

https://waf.io/
http://bnlif.github.io/wire-cell-docs/install/


Wire Cell Software

Wire Cell “core” Packages Overview
Wire Cell core packages, most named like wire-cell-*:

wire-cell git submodule aggregation and top-level build-package,
(master, ifaceio).

-data common, concrete data classes, (master).

-2dtoy working prototype implementation, (master).

-util general utility code, 3D vector, system of units, configuration
files, various C++ patterns, (ifaceio).

-iface interface classes for major components and data classes,
(ifaceio).

-nav default implementation of wire cell components with minimal
outside dependencies, (master, ifaceio).

-rio internal ROOT I/O persistency, (ifaceio).

-sst “simple simulation tree” file-interface to use LArSoft data and
geometry as one possible input to Wire Cell, (master, ifaceio).

waf-tools waf support files for the native build system, (master, ifaceio).

All found at https://github.com/BNLIF/.
Brett Viren (BNL) Wire Cell August 11, 2015 9 / 15

https://github.com/BNLIF/wire-cell/
https://github.com/BNLIF/wire-cell/tree/ifaceio/
https://github.com/BNLIF/wire-cell-data/
https://github.com/BNLIF/wire-cell-2dtoy
https://github.com/BNLIF/wire-cell-util/tree/ifaceio
https://github.com/BNLIF/wire-cell-iface/tree/ifaceio
https://github.com/BNLIF/wire-cell-nav/
https://github.com/BNLIF/wire-cell-nav/tree/ifaceio/
https://github.com/BNLIF/wire-cell-rio/tree/ifaceio/
https://github.com/BNLIF/wire-cell-sst/
https://github.com/BNLIF/wire-cell-sst/tree/ifaceio/
https://github.com/BNLIF/waf-tools/
https://github.com/BNLIF/waf-tools/tree/ifaceio/
https://github.com/BNLIF/


Wire Cell Software

Wire Cell Class Interfaces

• All important Wire Cell classes (in ifaceio) inherit from abstract base
classes following Interface patterns.

• Interface methods take POD or Interfaces.

• Code is in the wire-cell-iface package.

• std::shared_ptr<> memory ownership rules,

Two main categories of interfaces:

data (eg, ICell, ISlice)

• Data is const once created.
• Abstract iterator interface for collections.

component (eg, IConfigurable, IWireSummary, ITiling)

• Interface defines a facet of functionality.
• Name-based location/construction to support job

configuration and loosely coupled build dependencies.

Brett Viren (BNL) Wire Cell August 11, 2015 10 / 15



Wire Cell Software

Data Flow Programming Paradigm

Wire Cell supports the “data flow
programming” paradigm.

• Components are written to provide well
formed “sockets” (methods) connected
to accepting “signals”.

• Connections prototypes are
standardized based on purpose.

• Execution model is synchronous “pull”.

• Potential for fine-grained parallel
execution model with no component
code changes.

• Now, connections formed in C++ but this
will be exported to the end-user
configuration layer.

sst_depo

depo_fanin

depo_fanout

sig_depo bkg_depo

driftU driftV driftW

paramwires

wire_sequence

wire_summary

sstwires

digitizeU digitizeV digitizeW

cell_sequence frame_fanin

slicertiling

cell_charge_binner

cell_merger

blob_sequence

blob_solver

Brett Viren (BNL) Wire Cell August 11, 2015 11 / 15



Connections with LArSoft

Current Wire Cell / LArSoft Integration
• Wire Cell (core) is wholly independent from LArSoft.
• Stand-alone deposition, drifting, digitizing, etc provided.
• Deposition/digit/geometry input from other simulations

possible.

Existing LArSoft integration is via exchange files:
• The celltree LArSoft module, (Chao).
• Produces a plain ROOT TTree with (hits, digits) and dumps

wire geometry (as text).
• Independent from Wire Cell software.
• Not committed, needs a LArSoft package to call home

(suggestions?).
• Module is not specific to one LArSoft-supported detector.
• Files read in by wire-cell-sst package.

• A module to read back Wire Cell output file into to LArSoft is
in development.
→ Need new charge+point data product in LArSoft! In

mean time, will try to populate closest suitable data
products.

Wire Cell / LArsoft Integration By Files

Wire Cell Mainline

params

depositions

wires drift

digitize

readout

hit_cells

blobs

points

cluster

celltreepid

cells

larsoft

celltree

larsoft

Brett Viren (BNL) Wire Cell August 11, 2015 12 / 15



Connections with LArSoft

Future Wire Cell / LArSoft Integration
Main technical challenges:

• Both Wire Cell and LArSoft require a large amount of memory.
• We expect Wire Cell to be a significant CPU bottleneck

Our strategy is to make Wire Cell run in fine-grained parallel.
• Parallel at the time slice or even the lower “blob” level.
• Possible GPU acceleration, possible HPC utilization.
• Further integration with LArSoft must be understood is in this context.

Options:

• Maybe employ ATLAS Event Service approach (actual or DIY)?
• Need to understand how LArSoft “mothership” communicates to many

instances of Wire Cell.

• Enact parallel compute units in the data flow programming paradigm?
• Need parallel execution framework (exists but needs testing)

In any case, let’s start by developing a “LarWireCell” module:

• Wire Cell (core) remains LArSoft “external” and needs UPS packaging.
• Mimic Pandora’s integration patterns.

• A LArSoft module needs to convert between data representations and all Wire Cell
methods.

• I hope a LArSoft expert is interested in helping with this!

Brett Viren (BNL) Wire Cell August 11, 2015 13 / 15



Summary

• A working prototype clearly shows the power of the Wire
Cell technique.

• A code-refactoring is in progress to provide needed
structure going forward.

• Initial samples of 1000s of events have been processed and
are available via the Bee online event display.

Future directions:
• Expert help needed to improve integration with LArSoft!
• Capture existing file-based integration methods into some

LArSoft package.
• Explore how to tackle significant technical challenges

driven by the expected high CPU requirements and in the
face of memory pressures from both LArSoft and Wire Cell.

Brett Viren (BNL) Wire Cell August 11, 2015 14 / 15



Online Entry Points for More Info

The Wire Cell home page collects all info:

http://www.phy.bnl.gov/wire-cell/

Including links to:
• Bee online 3d event display
• Software documentation
• Software repositories

Brett Viren (BNL) Wire Cell August 11, 2015 15 / 15

http://www.phy.bnl.gov/wire-cell/
http://www.phy.bnl.gov/wire-cell/examples/list/
http://bnlif.github.io/wire-cell-docs/
https://github.com/BNLIF/wire-cell/

	Method
	Wire Cell Software
	Connections with LArSoft

