Accessing service providers

Gianluca Petrillo

University of Rochester/Fermilab

LArSoft architecture review meeting, August 12t |, 2015

G. Petrillo (Rochester/FNAL) August 121, 2015 1/7



LArSoft service model

We pursue a two-layer model:

service provider is independent of the framework and provides the
service

art service interface coordinates the provider with the framework and
delivers it to the users
@ users (and especially, algorithms) communicate only through the
service provider interface

@ framework modules are in charge of informing the algorithm about
the provider

This allows testing and execution of the algorithms (and services)
independently from the sorrounding framework.

G. Petrillo (Rochester/FNAL)

August 121" 2015 2/7



How does it look like from the user

In a module, get art service and ask it for service provider:

’geo::GeometryCore consté& geom = x (art::ServiceHandle<geo::Geometry>());
L

Listing 1: Geometry service provider

util::SimpleTimeService const& timeSrv
= &xart::ServiceHandle<util::TimeService>();

Listing 2: TimeService service provider

filter::ChannelFilterProvider const& chanFilt
f = art::ServiceHandle<filter::ChannelFilterService> () —->GetProvider();

Listing 3: ChannelFilterService service provider

lariov::IDetPedestalProvider const& pedestalRetrieval
T = art::ServiceHandle<lariov::IDetPedestalService> ()
F ->GetPedestalProvider () ;

Listing 4: IDetPedestalService service provider

util::DetectorProperties const& detProp
f = &*art::ServiceHandle<util::DetectorProperties>();

Listing 5: DetectorProperties service (no splitting yet)

G. Petrillo (Rochester/FNAL)



Discussion topics

@ the model itself (Jim K. asked about it on the last meeting)
@ the way to access the provider

— should be easy to convince you that a uniform approach is
preferable...

— Geometry service is so widely used that it seemed unwise to force
a interface change

— also from the last meeting: Brian R. was qualifying the syntax as
“confusing”

— possibly allowing also for alternative specific ones?

— either way: which way to go?

G. Petrillo (Rochester/FNAL) August 121, 2015 4/7



Additional material

G. Petrillo (Rochester/FNAL) August 12th , 2015 5/7



What | like

@ implementing two options:

lariov::IDetPedestalProvider const& pedestalRetrieval

= art::ServiceHandle<lariov::IDetPedestalService> ()

->GetProvider () ;
lariov::IDetPedestalProvider const* pPedestalRetrieval

= art::ServiceHandle<lariov::IDetPedestalService> ()
->GetProviderPtr () ;

[e2 0N, NSNS I \C

Listing 6: IDetPedestalService Service provider
(should the second return a shared pointer? I'd think not)

etrillo (Rochester/FNAL) August 121, 2015



What | like (contd)

@ | like implicit conversion so and so:
— compilers tend to take the initiative and convert where users don’t
expect
+ but, art services have a very limited use, it’s hard to think how this
could go wrong
— implicit conversion would allow algorithms to use art service
instead of the provider:

lariov::IDetPedestalProvider const* pPedRetr
= art::ServiceHandle<lariov::IDetPedestalService> ()
->GetProviderPtr () ;
float meanl = pPedRetr->PedMean (channel); // fine

lariov::IDetPedestalService constx pPedRetrService
= &*art::ServiceHandle<lariov::IDetPedestalService>();
float mean2 = pPedRetrService->PedMean (channel); // not fine

ONO OB WN =

Listing 7: The issue with implicit conversion

G. Petrillo (Rochester/FNAL) August 121, 2015 7/7



	Introduction
	Appendix

