
Accessing service providers

Gianluca Petrillo

University of Rochester/Fermilab

LArSoft architecture review meeting, August 12th , 2015

G. Petrillo (Rochester/FNAL) Accessing service providers August 12th , 2015 1 / 7



LArSoft service model

We pursue a two-layer model:
service provider is independent of the framework and provides the

service
art service interface coordinates the provider with the framework and

delivers it to the users

users (and especially, algorithms) communicate only through the
service provider interface
framework modules are in charge of informing the algorithm about
the provider

This allows testing and execution of the algorithms (and services)
independently from the sorrounding framework.

G. Petrillo (Rochester/FNAL) Accessing service providers August 12th , 2015 2 / 7



How does it look like from the user

In a module, get art service and ask it for service provider:

1 geo::GeometryCore const& geom = *(art::ServiceHandle<geo::Geometry>());

Listing 1: Geometry service provider

1 util::SimpleTimeService const& timeSrv
2 = &*art::ServiceHandle<util::TimeService>();

Listing 2: TimeService service provider

1 filter::ChannelFilterProvider const& chanFilt
2 = art::ServiceHandle<filter::ChannelFilterService>()->GetProvider();

Listing 3: ChannelFilterService service provider

1 lariov::IDetPedestalProvider const& pedestalRetrieval
2 = art::ServiceHandle<lariov::IDetPedestalService>()
3 ->GetPedestalProvider();

Listing 4: IDetPedestalService service provider

1 util::DetectorProperties const& detProp
2 = &*art::ServiceHandle<util::DetectorProperties>();

Listing 5: DetectorProperties service (no splitting yet)

G. Petrillo (Rochester/FNAL) Accessing service providers August 12th , 2015 3 / 7



Discussion topics

the model itself (Jim K. asked about it on the last meeting)
the way to access the provider

– should be easy to convince you that a uniform approach is
preferable...

– Geometry service is so widely used that it seemed unwise to force
a interface change

– also from the last meeting: Brian R. was qualifying the syntax as
“confusing”

– possibly allowing also for alternative specific ones?
– either way: which way to go?

G. Petrillo (Rochester/FNAL) Accessing service providers August 12th , 2015 4 / 7



Additional material

G. Petrillo (Rochester/FNAL) Accessing service providers August 12th , 2015 5 / 7



What I like

implementing two options:

1 lariov::IDetPedestalProvider const& pedestalRetrieval
2 = art::ServiceHandle<lariov::IDetPedestalService>()
3 ->GetProvider();
4 lariov::IDetPedestalProvider const* pPedestalRetrieval
5 = art::ServiceHandle<lariov::IDetPedestalService>()
6 ->GetProviderPtr();

Listing 6: IDetPedestalService service provider

(should the second return a shared pointer? I’d think not)

G. Petrillo (Rochester/FNAL) Accessing service providers August 12th , 2015 6 / 7



What I like (cont’d)

I like implicit conversion so and so:
− compilers tend to take the initiative and convert where users don’t

expect
+ but, art services have a very limited use, it’s hard to think how this

could go wrong
− implicit conversion would allow algorithms to use art service

instead of the provider:

1 lariov::IDetPedestalProvider const* pPedRetr
2 = art::ServiceHandle<lariov::IDetPedestalService>()
3 ->GetProviderPtr();
4 float mean1 = pPedRetr->PedMean(channel); // fine
5
6 lariov::IDetPedestalService const* pPedRetrService
7 = &*art::ServiceHandle<lariov::IDetPedestalService>();
8 float mean2 = pPedRetrService->PedMean(channel); // not fine

Listing 7: The issue with implicit conversion

G. Petrillo (Rochester/FNAL) Accessing service providers August 12th , 2015 7 / 7


	Introduction
	Appendix

