

Tyler Alion tylerdalion@gmail.com

Timescale: Not Urgent

- Simulation is good enough for most people.
 - Proton decay people will be interested in looking at as much of the active volume as possible
 - APA reconstruction people
- 35t would need the most customizability, but is close to data.

- DUNE FD/prototype definitely needs something to change ...eventually.
 - Quick fix, broad fix

Simulation Recap

- G4Step gives LArSoft world coordinates and energy deposition
- LArVoxelReadout::DriftIonizationElectrons
 - passed the world coordinates
 - gets number of deposition electrons from lonizationAndScintillation
- DriftIonizationElectrons calculates:
 - Channel on which to put charge (sime::IDE) after accounting for transverse diffusion
 - Drift time after accounting for recombination, longitudinal diffusion, and varying fields in between wire planes

LArVoxelReadout::DriftIonizationElectrons

- Depending on electric field:
 - Velocity
 - Recombination
 - Longitudinal Diffusion
- Field assumed uniform throughout TPCActive
 - Except between wire planes while calculating drift time
- Kills any negative drift (which wouldn't happen anyway, later slide)
- Now the potential problems...

Standard Potential Distribution

DUNE APAs Next To Cryostat Walls

Software Problem

 Need 2 TPCGeo volumes per APA for sorting and channel mapping

- "volTPC*" must contain one "volTPCActive"
 - LArVoxelReadoutGeometry::FindNestedVolume
 - Quick fix: allow zero active volumes, no drift on the outsides is close enough
- General Fix: Calculate drift time as a function of ionization position in world coordinates

35t Field Oddities

- Gaps between field cage and nearest wires
 - Vertical (fig. above)
 - Horizontal
- Gaps between APAs
- For now:
 - nearest wire bends inward the right way
 - DetSim handles some fancy potentialities at edges (Tom Junk)

Simulation in between Planes

- Nothing in the midst of the planes is drifted
 - Makes sense for single-TPCs
 - APA designs impacted more here
- Varying field still accounted fro in drift time calculation
- ~7cm thick slab of dead region for every APA
- Extend TPCActive to contain wireplanes into the frame?

Electric Field: Detector Specific Implementation

- Much like IonizationAndScintilation, except selected by a helper class like the Geometry (Gianluca's idea)
 - Would need to be initialized at some point since it depends on Geometry
 - thoughts

- Base class agnostic to implementation
 - Input: world position of ion., time/space charge?
 - Output: drift time and final yz position of ion.
 - In-between: parameterized function, database, ...
- Pull current calculation in DriftIonizationElectrons into a standard implementation
 - helper would route all other users to that

Takeaway Points

 FD (or any APA geo) Reconstruction challenges if we discover significant effects in 35t

Regain drift in the midst of the wireplanes

- Make field user-implementable.
 - Think about most general/elegant, Any solutions here are just initial suggestions
 - Should we think bigger? Any valuable foresight?