

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# M-4 Beamline Profile and Intensity Monitors

Daniel Schoo Gianni Tassotto

External Beamline & Instrumentation Independent Design Review 6 October 2015

# **Extraction Beamline Multiwires**

- Based on the lattice design, the M4 line will contain 28 profile monitors that will be used to measure the profile and position of the beam.
  - One shared PWC
  - Eight repurposed UTA multiwires
  - Eighteen new NuMI-extraction style multiwires
  - One repurposed BNL PWC





2

## **Vacuum Cans**

#### Two types of vacuum cans will be used.

- Fermilab design rotary motion
- University of Texas design (UTA) linear motion

#### Mechanical reliability of rotary feedthrough

- Life tests conducted during the prototyping of the NuMI profile monitors.
- Cycled prototype 500,000 times. After the test inspected mechanical parts i.e., switches, rotary feed through etc. No functional damage was detected.





#### Fermilab Design (rotary motion)



# UTA Design (linear) Fermilab

# Wire planes

### **Ceramic substrate**

- Alumina 96 Ceramic
- Fired Ag-Pd metallization
- Surface mounted connectors

#### Wires

- Titanium wires or foils
- Wire pitch 0.5 and 1mm

#### **Electrical Tests**

- Continuity
- Wire to wire leakage
- Flash test

#### **Pitch Measurements**

Made at SiDet using Avant 600 made by Optical Gaging Products. The uncertainty in position was +/- 10 μm.







# **Charge Estimate**

- The charge generated by the beam on a wire is a function of: 1. The beam intensity 2. The dimensions of the wire/foil 3. The Full Width Half Maximum beam size assuming a Gaussian distribution. The table below shows the estimated charge generated by a total integrated intensity of 1E12 for two multiwires each seeing a different FWHM. Both use a wire diameter of 75 µm and a assuming a 3% Secondary Emission Efficiency.
- MW929 FWHM = 28.8 mm
- MW936 FWHM = 5.4 mm
- Tests show that a simulated charge of 10 pico coloumbs at beam center is sufficient for the scanner in order to produce a useable plot. 100 pC = full scale
- We should be able to display a few slices of the beam during spill.

| Name  | Wire<br>Diameter<br>(µm) | FWHM<br>(mm) | Spill<br>Intensity | Charge/spill<br>(pCoul) |
|-------|--------------------------|--------------|--------------------|-------------------------|
| MW923 | 75                       | 28.8         | 1E12               | 11.7                    |
| MW936 | 75                       | 5.4          | 1E12               | 62.6                    |



5

## Simulated Profile Sizes for 0.5mm and 1.0mm wire spacing



10/6/15

#### **SWIC Scanners Overview**

- SWIC Scanners capture signals from all types of wireplane profile detectors and provide a plot of the beam profile.
  - P-Bar foil SEM Profile Monitor
  - Proportional Wire Chamber (PWC)
  - Texas Multiwire
  - Reilly Stacked Plane Multiwire (NuMI type)
  - Segmented Wire Ion Chamber (SWIC)





**Typical Plot** 

SWIC Scanner



🛟 Fermilab

## **PreTarget and PostTarget Multiwire**

- Two profile monitors were added to the scope of this WBS.
  - Upstream of production solenoid will be a standard Multiwire
  - Downstream of the production solenoid will be a BNL air SWIC.







## **Design considerations: MW's in magnetic field**

- Need to examine the effects of magnetic field on the multiwire just upstream of the target solenoid.
  - Does the magnetic field impact the motion control (PreTarget MW only)?
  - Does the magnetic field impact the signal?





9

#### **SWIC Scanner Internals**

- Charge from particle beam is collected by a grid of detector wires (up to 48 each H and V) and integrated onto capacitors.
- Capacitor voltages converted by 16-bit ADCs
- Results sent to control system for plotting and other analysis





## **SWIC Scanner Configuration**

- Integration is triggered by a TCLK Event or external pulse input
- Programmable delay between trigger and start of integration
- Programmable integration time
- Multiple integrations can be performed and stored in a programmable sequence

|       |           |           |                                   | ♦Swic           | (M101 )+     |        |     |       |       |         |    |   |
|-------|-----------|-----------|-----------------------------------|-----------------|--------------|--------|-----|-------|-------|---------|----|---|
|       | Co        | nfigurat  | ion —                             |                 | Sequence     |        |     |       |       |         |    |   |
|       |           | U         |                                   | ◆Seq ON ◆ ◆Set◆ |              |        |     |       |       | <b></b> | р  |   |
|       |           | Durat     | ion                               |                 | 0<0><        | Displa |     | none  | ><    | none    |    |   |
| #     | Tupe Ga   | in (mils  | iec) T                            | hres            | 1<0><        | Displa | u>< | none  | ><    | none    |    |   |
| 0 <.  | Zero><1   | ><100     | ><10                              | <000>           | 2 <          | none   | ><  | none  |       | none    | >  |   |
| 1 <   |           |           |                                   |                 | 3 <          | none   |     | none  |       | none    | >  |   |
| 2 <   |           |           |                                   |                 | 4 <          | none   |     | none  |       |         | >  |   |
| 3 <   |           |           |                                   |                 | 5 <          | none   |     | none  |       |         | >  |   |
| 1 <   |           |           |                                   |                 | 6 <          | none   |     | none  |       |         | >  |   |
| 5 <   |           |           |                                   |                 | 7 <          | none   |     |       |       | none    | >  | n |
| 5 <   |           |           |                                   |                 |              |        |     |       |       |         |    | + |
| 7 <   |           |           |                                   | >               |              | — н    | igh | Volta | ige - |         |    |   |
|       |           | Events    |                                   |                 |              |        |     |       |       |         |    |   |
| ♦Set♦ |           |           |                                   |                 | Power Status |        |     |       |       |         |    |   |
|       |           |           |                                   |                 | ♦Read        |        |     |       |       |         |    |   |
|       | Start     | Sample    | Stop                              |                 | M101         | M105   | M1  | L07   | M108  | 3 M1    | 12 |   |
|       |           | 1000      |                                   |                 | MTGT         | MTGTL  | N1  | 14    | N11   | 5 N1    | 17 |   |
|       | <ad></ad> | <a9></a9> | <pre><pre><pre></pre></pre></pre> |                 | N118         | N121   |     |       |       |         |    |   |

**Plotting Application Page** 



#### Autotune

- We will develop a M4 beamline autotune based on the autotune system that is already used for the NuMI and MiniBooNE beamlines.
  - Reads beam positions
  - Changes trim settings to keep the beamline tuned up.



#### Autotune Application

Autotune Documentation: <u>http://www-</u> <u>bd.fnal.gov/controls/autotune/doc/#main</u>

#### **Autotune Correction Matrix**

| MiniBooNE supercycle Matrix |                                                      |          |          |          |          |          |         |          |          |          |           |           |         |          |
|-----------------------------|------------------------------------------------------|----------|----------|----------|----------|----------|---------|----------|----------|----------|-----------|-----------|---------|----------|
| mm/A                        | E:HT860D                                             | E:HT862D | E:HT865D | E:HT866D | E:HT868D | EHT870D  | EHT872D | E:HT873D | E:VT862D | E:VT865D | E:VT867D  | E:VT869D  | EVT871D | E:VT873D |
| E:HP861S                    | -2.9980                                              |          |          |          |          |          | 1       |          |          |          |           |           |         |          |
| E:HP864S                    | -13.2930                                             | -10.6910 |          |          |          |          |         |          |          |          |           |           |         |          |
| E:HP866S                    | 5.1790                                               | 1.9970   | -6.5380  |          |          |          |         |          |          |          |           |           |         |          |
| E:HP868S                    | 14.6900                                              | 9.7900   | -3.8950  | -9.4350  |          |          |         |          |          | E        | mpty cell | s are 0.0 |         |          |
| E:HP870S                    | 1.6020                                               | 3.6910   | 9.2310   | -6.9680  | -15.5780 |          |         |          |          |          |           |           |         |          |
| E:HP8725                    | -16.4790                                             | -10.3240 | 7.8480   | 6.0290   | -5.5340  | -14.5600 |         |          |          |          |           |           |         |          |
| E:HP8755                    | 4.1100                                               | 1.7600   | -5.0440  | 0.3910   | 6.4720   | 4.2510   | -5.5140 | -0.3790  |          |          |           |           |         |          |
| EHPTGTS                     | 5.0890                                               | 3.6070   | -2.2740  | -1.8420  | 1.1830   | 4.3320   | 0.2360  | -0.2740  |          |          |           |           |         |          |
| E:VP8645                    |                                                      |          |          |          |          |          |         |          | 6.0080   |          |           |           |         |          |
| E:VP8675                    |                                                      |          |          |          |          |          |         |          | 3.7440   | 7.3130   |           |           |         |          |
| E:VP869S                    |                                                      |          |          |          |          |          |         |          | -4.0540  | 22.6840  | 11.6430   |           |         |          |
| E:VP8715                    | E:VP871S The active matrix cannot be edited directly |          |          |          |          |          |         |          | -4.0970  | -2.1710  | 2.4630    | 5.0620    |         |          |
| E:VP8755                    |                                                      |          |          |          |          |          |         |          | 1.0020   | -4.7470  | -2.1380   | 0.0110    | 2.3770  | 1.4810   |
| E:VPTGTS                    | 1                                                    |          |          |          |          |          |         |          | 2.4230   | -1.3290  | -2.0760   | -1.7180   | 1.5020  | 3.5020   |
|                             | Display the inverted matrix Invert Dismiss           |          |          |          |          |          |         |          |          |          |           |           |         |          |

🛟 Fermilab

### The Mu2e Autotune System

- The Mu2e autotune system will be used primarily to keep the beam position tuned on target.
  - Multiwires will be moved into the beam as needed.
  - Horizontal and vertical profiles will be collected from each Multiwire.
  - Checks will be made on the distribution to verify that we have a valid profile.
  - Horizontal and vertical positions are collected if the profiles are valid.
  - A square matrix of trims and multiwires will be used to determine what correction element trim corrections are needed to steer the beam back to the desired orbit.
  - A fraction of the desired correction is sent.
  - Repeat as necessary.
  - Multiwires are pulled out of the beam when not in use.



## **Extraction Beamline Ion Chamber Locations**





## **Ion Chambers**



Box



🚰 Fermilab

- Ion chamber uses tested FNAL design.
- The ion chamber fits in existing anti-vacuum box.
- The anti-vacuum boxes will be installed inside of bayonet vacuum vessels that are being repurposed from Switchyard
- The bayonet type drive slides the ion chamber linearly into and out of the beam with a screw drive system.
- The detector linear drive shaft is housed in a collapsible bellows that seals it from atmosphere.

# **Bayonet Vacuum Can Modifications**

#### Issues:

- The new ion chamber requires a deeper antivacuum can.
- Vacuum window leak problems.

#### **Modifications:**

- Increase the depth by 0.4" to accommodate the ion chamber.
- Replace O-Ring sealed windows on anti-vacuum can with smaller e-beam welded windows.



Bayonet drive anti-vacuum box With 9 inch O-ring sealed window



**Extension Spacer Installed** 



Replacement 4 inch E-Beam Welded Window



# **Ion Chamber Beam Test**

- Performed comparison beam tests between an Ion chamber and a scintillation counter to determine the lower Ion chamber reading limit.
- AD Instrumentation Current Digitizer Module Readout
- M-Test beam parameters
  - E = 120 GeV
  - Spill Length = 4 sec
  - Cycle = 60 sec

#### It was found that the ion chamber starts integrating around 1e5 counts.







## **AD Instrumentation - Current Digitizer Module**

- NIM Module based.
- Improved version of existing time-tested design.
- Charge to pulse train converter.
- 0 to 100KHz for 0 to 200 nanoampere dynamic range.
- 2% accuracy from 2 to 2000 nanocoulombs.
- 2 second time constant.
- Built in gate generator for CAMAC scaler module.
- Status display on the front panel.



**Calibration Test Setup** 







# Conclusion

- Final design for both Multiwire and Ion Chamber systems are nearing completion and we will be ready to begin implementation by the start of the CY '16 CD3 review.
- A lot of work has already been done to prove that the beam profiles and intensities are displayed accurately for the M4 beamline. This includes:
  - Modifications of the bayonet anti-vacuum cans to accommodate ion chambers which include e-beam welding the new windows, add the new extension ring and then perform a vacuum leak check.
  - Complete the modifications of the UTA vacuum cans to accept the new wire planes.
  - Design work that needs to be completed before the CD3 review include:
    - Finish assembly and vacuum testing of new Bayonet Can/Antivacuum Box design.
    - Finish any design modifications required to make the PreTarget and Post Target MW's work in the magnetic field of the production solenoid.

