Creating US PhenoGrid A particle physics resource based on OSG

Stefan Höche, Frank Würthwein

SLAC & UCSD

OSG Council Meeting Chicago, 10/08/15

Monte-Carlo simulations in hadron collider physics

The MCnet collaboration

Members: CERN, Durham, Göttingen, Karlsruhe, Louvain, Lund, Manchester, UCL

Associates: Dresden, Monash, SLAC, Zürich

General-purpose MCs developed by MCnet

[http://www.montecarlonet.org]

Herwig CERN, Durham, Karlsruhe, Manchester

- Originated in studies of coherent QCD evolution
- ► Front-runner in matching of NLO QCD ME and PS
- ► Original framework for cluster fragmentation

Pythia CERN, (FNAL), Lund, Monash

- ► Originated in hadronization studies → Lund string
- ► Leading in development of models for non-perturbative physics
- ► Extensive PS development and earliest ME+PS matching

Sherpa CERN, Dresden, Durham, Göttingen, SLAC, Zürich

- ► Started with matching of LO ME and PS
- ► First automated framework for NLO calculations
- ► First automated merging of ME and PS at NLO
- ► First NNLO+PS matching in general-purpose MC

Why OSG?

- ► LHC final states typically very complex (lots of jets!) interesting signals small and in tricky corners of phase space \rightarrow Need many events to simulate backgrounds accurately $\mathcal{O}(10M)$
- ► Precise theoretical predictions needed to extract physics parameters → Simulation of one event can take anywhere from 10ms to 100s
 - 7 Simulation of one event can take anywhere from 10m3 to 100
- ► Theory uncertainty estimates mandatory to control systematics
 - \rightarrow Multiplies computational effort by factor of $\mathcal{O}(1-10)$

A single high-precision MC prediction costs $\mathcal{O}(250k)$ CPU hours

Examples: $H/t\bar{t}+jets$ simulation at NLO

- ▶ H+jets: \sim 481k hours worth of CPU time in \sim 6 days
- ightharpoonup $t\bar{t}$ +jets: \sim 345k hours worth of CPU time in \sim 14 days

PhenoGrid Proposal

Aim

- ► Make output of simulations useful beyond a single analysis
- ▶ Provide reference event samples for both theory and experiment

Realized by integrated system of

- ► Generator setups managed by experts
- ▶ Coherent runtime environment
- ► Storage and management of results

Requirements

- ► Storage: ~ 2-20 TB per event sample
- ► CPU: 16 core parallelism or better (initialization stage only)
- ► Memory: 2-4 GB / core