LArSoft

Erica Snider *Fermilab*

LArSoft core support team:

Vito di Benedetto

Lynn Garren

Patrick Gartung,

Mark Mengel, Gianluca Petrillo,

Vladimir Podstavkov, Erica Snider

LArSoft Assessment and Requirements Workshop Oct. 19—20, 2015 Fermilab

LArSoft project / collaboration

A collaboration of experiments, Fermilab, other stakeholders

Goals

- To provide an integrated, art-based, experiment-agnostic set of software tools to be used by multiple LAr neutrino experiments to perform simulation, data reconstruction, analysis
- By developing common data structures, algorithms, architecture
 - Reduce the cost of developing, supporting and maintaining the simulation and reconstruction software for collaboration members
 - Avail ourselves of the widest possible community of experts and developers to reconstruction, simulation solutions
 - To propagate knowledge directly detector-agnostic via code

Legacy LArSoft requirements

- Understand why we are were we are now
- Some history
 - Shared core software originally developed for ArgoNeuT and MicroBooNE
 - Effort initiated, led by Brian Rebel and Eric Church
 - Recognized common features for LArTPC technology
 - Allows leveraging effort across multiple experiments to solve common problems
 - A set of agreements required to achieve this sharing
 - Definition of core software to share in common
 - Common set of data abstractions, interfaces
 - Common Interfaces to configuration data
 - Detector properties, LAr properties, etc.
 - Common workflow elements to connect data abstractions
 - The steps in the reconstruction that create higher-level data products from lower-level
 - External dependencies
 - Common / compatible build systems, version control system

Legacy LArSoft requirements

- All major architecture, workflow elements grew from this early collaboration
 - Raw data calibration and deconvolution
 - Hit finding
 - Cluster-finding
 - Track-finding
 - Shower-finding
 - Vertex finding
 - Momentum estimation and particle ID
- Not included in these early requirements
 - Specific physics requirements
 - Left entirely to the experiments to define and manage
 - Comprehensive set of unifying design principles and guidelines

The collaboration now

- Some of the core principles of this collaborative effort
 - Development and priorities driven entirely by the experiments
 - Core project team supports that development
 - Collectively agree on the unifying principles
 - A distributed community working bottom up all are welcome
 - Encourage innovation and new ideas, provide interfaces to alternative algorithms and approaches, integrate code for use by the collaboration
 - Pandora
 - "Wire-cell" approach
 - Recently introduced by Xin Qian, Chao Zhang, Brett Viren
 - Working to integrate fully at

Core LArSoft project

- Focused on ensuring the success of the sharing paradigm
 - Assist with coordinating development, integration of the common software
 - Address collaboration-wide needs and requirements not easily managed by individual experiments
 - Ensure interoperabilty
 - Manage evolution of the common architecture
 - Promote policies and tools to assist with development and integration
 - Carry out other actions as may be needed
 - Work closely with experiments to ensure alignment of goals, priorities and processes

Projects and initiatives

- Directed at integration and collaboration-wide needs and requirements
- Recent and on-going projects and initiatives
 - Continuous integration system
 - Architecture review and revision project
 - Code profiling and optimization project
 - LArSoft / light-weight analysis framework (LArLite) integration project
 - Workshops and training
 - LArSoft Continuous Integration Workshop (June 2014)
 - LArSoft Architecture and Testing Workshop (June 2015)
 - art / LArSoft Course (Aug 2015)
 - LArSoft Requirements Workshop (Oct 2015)

Continuous Integration System

Continuous integration (CI)

- A software development technique that involves frequent integration of newly developed code to the main branch of development
- Each integration is tested by an automated build and test system

Goals

- Catch integration problems, unintended side-effects quickly
- Maintain a more stable main-line development branch
- Able to create releases with known properties at all times

Deployed a CI system in September, 2014

- Runs a developer-maintained test suite on every commit to the main development branch
- Easy to configure, add tests to the suite
- Can define tiers of test suites to be run at various times
 - Per commit, nightly, during release creation process

Continuous Integration System

Current status

- Working on developing production quality, per-commit test suite
 - Runs unit tests
 - Runs all major components of the data and MC production chains for each experiment looking for major changes
 - Regression tests of known problems, data backwards compatibility
 - Executes and returns a result within about 10 minutes
 - Can be run on user code prior to committing to the main development branch
- Will be followed by developing test suites to be run nightly, during release procedure.
 - Higher statistics tests, more in-depth probing for changes
- Have 0.5 FTE working on this

Architecture review and revision project

- Good design facilitates development of sophisticated algorithms
- Have promoted a set of design principles and objectives
 - Detector-independence using common interfaces to configuration data, generic indexing tools to automate loop construction, etc.
 - Factorization of algorithm code from framework interfaces
 - Modularization of algorithms into testable units with standardized interfaces
 - Accompanying tests to be run by the CI system
 - Documentation

Architecture review and revision project

- Initiated a review of selected major components
 - Address problems in the areas described
 - Develop exemplars for the design principles
- Prioritization of the revisions
 - Interoperability
 - Factorization
 - Maintainability, modularization
 - Optimization
- Currently have about 0.5 FTE devoted to this effort
- This phase will be completed around end of calendar 2015.

Code profiling and optimization project

- Optimization of algorithms can often benefit from advise, guidance from software engineering experts
 - Have enlisted a group from SCD to assist with profiling specific production chains to help identify major bottlenecks and suggest solutions Krzysztof Genser, Jim Kowalkowski, Hans Wenzel
 - A short project in winter 2015 focused on reconstruction
 - Report generated a number of tasks that uBooNE is working on
 - Existing project looking at the simulation, in particular:
 - Use of physics lists
 - Geometry use and energy deposition, stepping and other GEANT4 parameters
 - Code speed
 - Upstream detector integration
 - Allocated 0.5 FTE for about a month
 - Current project will conclude soon

LArSoft / LArLite integration project

- uBooNE collaborators developed a light-weight development environment – LArLite
 - Allows isolation of code elements to speed development cycle
 - Based on a different build system
 - Used by a number of uBooNE developers, particularly those working on shower reconstruction
- Several differences prevented easy integration with LArSoft
 - Data structures differed in some details
 - Incompatible data files required conversion from LArSoft to LArLite format

LArSoft / LArLite integration project

Initiated a project to integrate LArSoft and LArLite

Dave Dagenhart, Chris Jones, Marc Paterno

- Allow seamless, transparent migration of
 - data structures
 - algorithm code

between LArSoft and LArLite

- Ideally, want to be able to share source repositories for common code
- Initial report identified the necessary changes to LArLite, LArSoft and art framework
- Project work started earlier in the summer
 - Some of the required changes to LArLite already made
 - Working on changes to art framework
 - Much of the LArSoft work being carried out under the auspices of the architecture project

Development and integration coordination

- A major issue for LArSoft collaboration to manage
 - Coordinating changes to common code driven by work of each experiment
 - Code developed by one experiment to address a specific issue can change behavior in undesirable ways for another experiment
 - Extremely important to understand, manage these types of situations
 - Need to do this while maintaining a stable development environment

Development and integration coordination

- Have a number of tools to assist with coordination
 - Bi-weekly LArSoft Coordination Meeting
 - Attended by all experiments
 - All code changes are discussed, approved before being integrated into the main development branch
 - Contents of releases are discussed and approved
 - Special procedures for changes that break existing code
 - Discuss architecture, coding issues
 - Continuous integration system
 - An extremely important tool
 - Informs developers, offline managers immediately when changes adversely affect any experiment
 - Weekly integration releases
 - Frequent releases creates stable, common platform on which to base changes
 - All development occurs in branches separated from main development branch
 - Allows controlled integration procedure

Development and integration coordination

- Have a number of tools to assist with coordination.
 - Architecture Committee
 - Representatives from experiments plus SCD design experts
 - Explores architectural issues
 - Goal is to understand solutions, trade-offs prior to bringing them to the developers
 - Steering Group
 - Experiment spokes, Neutrino Division Head, SCD Division Head
 - Develops and approves priorities, policies and direction
 - Oversees meeting of requirements, milestones, etc

Summary

- A diverse, very active community successfully contributing to LArSoft
- Core support team provides important services that support the collaboration
 - Have a good short term program of projects
 - Effort limited as to what we can do at present
- Still much more work to do
 - The present workshops are a good step toward defining how to proceed