LArSoft

Erica Snider
Fermilab

LArSoft core support team:
Vito di Benedetto
Lynn Garren
Patrick Gartung,
Mark Mengel, Gianluca Petrillo,
Vladimir Podstavkov, Erica Snider

LArSoft Assessment and Requirements Workshop
Oct. 19—20, 2015
Fermilab

LArSoft project / collaboration

® A collaboration of experiments, Fermilab, other stakeholders

® Goals

- To provide an integrated, art-based, experiment-agnostic set of software
tools to be used by multiple LAr neutrino experiments to perform

simulation, data reconstruction, analysis

- By developing common data structures, algorithms, architecture

Reduce the cost of developing, supporting and maintaining the simulation and
reconstruction software for collaboration members

Avail ourselves of the widest possible community of experts and developers to
reconstruction, simulation solutions

To propagate knowledge directly detector-agnostic via code

Legacy LArSoft requirements

e Understand why we are were we are now

® Some history

- Shared core software originally developed for ArgoNeuT and MicroBooNE

« Effort initiated, led by Brian Rebel and Eric Church
 Recognized common features for LArTPC technology

« Allows leveraging effort across multiple experiments to solve common problems
- A set of agreements required to achieve this sharing

» Definition of core software to share in common
« Common set of data abstractions, interfaces
« Common Interfaces to configuration data
- Detector properties, LAr properties, etc.
« Common workflow elements to connect data abstractions

- The steps in the reconstruction that create higher-level data products from lower-level
« External dependencies

« Common / compatible build systems, version control system

Legacy LArSoft requirements

e All major architecture, workflow elements grew from this early
collaboration

- Raw data calibration and deconvolution
- Hit finding

- Cluster-finding

- Track-finding

- Shower-finding

- Vertex finding

- Momentum estimation and particle ID
® Not included in these early requirements
- Specific physics requirements

« Left entirely to the experiments to define and manage

- Comprehensive set of unifying design principles and guidelines

The collaboration now

Some of the core principles of this collaborative effort

Development and priorities driven entirely by the experiments

« Core project team supports that development

- Collectively agree on the unifying principles

- A distributed community working bottom up - all are welcome

- Encourage innovation and new ideas, provide interfaces to alternative
algorithms and approaches, integrate code for use by the collaboration

« Pandora

“Wire-cell” approach

- Recently introduced by Xin Qian, Chao Zhang, Brett Viren
- Working to integrate fully at

Core LArSoft project

® Focused on ensuring the success of the sharing paradigm

Assist with coordinating development, integration of the common software

Address collaboration-wide needs and requirements not easily managed by
individual experiments

« Ensure interoperabilty
« Manage evolution of the common architecture
« Promote policies and tools to assist with development and integration

e Carry out other actions as may be needed

Work closely with experiments to ensure alignment of goals, priorities and
processes

Projects and initiatives

Directed at integration and collaboration-wide needs and
requirements

Recent and on-going projects and initiatives

- Continuous integration system

- Architecture review and revision project

- Code profiling and optimization project

- LArSoft / light-weight analysis framework (LArLite) integration project

- Workshops and training

* LArSoft Continuous Integration Workshop (June 2014)

» LArSoft Architecture and Testing Workshop (June 2015)
e art/ LArSoft Course (Aug 2015)

* LArSoft Requirements Workshop (Oct 2015)

Continuous Integration System

® Continuous integration (Cl)

- A software development technique that involves frequent integration of
newly developed code to the main branch of development

- Each integration is tested by an automated build and test system

® Goals
- Catch integration problems, unintended side-effects quickly
- Maintain a more stable main-line development branch

- Able to create releases with known properties at all times
® Deployed a Cl system in September, 2014

- Runs a developer-maintained test suite on every commit to the main
development branch

- Easy to configure, add tests to the suite
- Can define tiers of test suites to be run at various times

« Per commit, nightly, during release creation process

Continuous Integration System

® Current status

- Working on developing production quality, per-commit test suite

e Runs unit tests

* Runs all major components of the data and MC production chains for each
experiment looking for major changes

* Regression tests of known problems, data backwards compatibility
« Executes and returns a result within about 10 minutes

« Can be run on user code prior to committing to the main development branch

- Will be followed by developing test suites to be run nightly, during release
procedure.

* Higher statistics tests, more in-depth probing for changes

- Have 0.5 FTE working on this

Architecture review and revision project

® Good design facilitates development of sophisticated algorithms

e Have promoted a set of design principles and objectives

Detector-independence using common interfaces to configuration data,
generic indexing tools to automate loop construction, etc.

Factorization of algorithm code from framework interfaces
Modularization of algorithms into testable units with standardized interfaces
Accompanying tests to be run by the Cl system

Documentation

10

Architecture review and revision project

® |nitiated a review of selected major components

- Address problems in the areas described
- Develop exemplars for the design principles

® Prioritization of the revisions

- Interoperability

- Factorization

- Maintainability, modularization
- Optimization

® Currently have about 0.5 FTE devoted to this effort

® This phase will be completed around end of calendar 2015.

11

Code profiling and optimization project

Optimization of algorithms can often benefit from advise,
guidance from software engineering experts

- Have enlisted a group from SCD to assist with profiling specific production

chains to help identify major bottlenecks and suggest solutions
Krzysztof Genser, Jim Kowalkowski, Hans Wenzel

- A short project in winter 2015 focused on reconstruction
« Report generated a number of tasks that uBooNE is working on
- Existing project looking at the simulation, in particular:

» Use of physics lists
« Geometry use and energy deposition, stepping and other GEANT4 parameters
+ Code speed

« Upstream detector integration
- Allocated 0.5 FTE for about a month

- Current project will conclude soon

12

LArSoft / LArLite integration project

e uBoONE collaborators developed a light-weight development
environment - LArLite

Allows isolation of code elements to speed development cycle

Based on a different build system

Used by a number of uBooNE developers, particularly those working on
shower reconstruction

® Several differences prevented easy integration with LArSoft

Data structures differed in some details

Incompatible data files required conversion from LArSoft to LArLite format

13

LArSoft / LArLite integration project

Initiated a project to integrate LArSoft and LArLite

Dave Dagenhart, Chris Jones, Marc Paterno

- Allow seamless, transparent migration of

data structures

* algorithm code
between LArSoft and LArLite

- Ideally, want to be able to share source repositories for common code

Initial report identified the necessary changes to LArLite,
LArSoft and art framework

Project work started earlier in the summer

- Some of the required changes to LArLite already made
- Working on changes to art framework

- Much of the LArSoft work being carried out under the auspices of the
architecture project 14

Development and integration coordination

® A major issue for LArSoft collaboration to manage

Coordinating changes to common code driven by work of each experiment

Code developed by one experiment to address a specific issue can change
behavior in undesirable ways for another experiment

Extremely important to understand, manage these types of situations

Need to do this while maintaining a stable development environment

15

Development and integration coordination

® Have a number of tools to assist with coordination

- Bi-weekly LArSoft Coordination Meeting
« Attended by all experiments

« All code changes are discussed, approved before being integrated into the main
development branch

« Contents of releases are discussed and approved

- Special procedures for changes that break existing code
» Discuss architecture, coding issues

- Continuous integration system
* An extremely important tool

« Informs developers, offline managers immediately when changes adversely
affect any experiment

- Weekly integration releases

* Frequent releases creates stable, common platform on which to base changes

« All development occurs in branches separated from main development branch
« Allows controlled integration procedure 16

Development and integration coordination

® Have a number of tools to assist with coordination

- Architecture Committee

« Representatives from experiments plus SCD design experts
 Explores architectural issues

» Goal is to understand solutions, trade-offs prior to bringing them to the
developers

- Steering Group
« Experiment spokes, Neutrino Division Head, SCD Division Head

« Develops and approves priorities, policies and direction

+ Oversees meeting of requirements, milestones, etc

17

Summary

e A diverse, very active community successfully contributing to
LArSoft

e (Core support team provides important services that support
the collaboration

- Have a good short term program of projects

- Effort limited as to what we can do at present

e Still much more work to do

- The present workshops are a good step toward defining how to proceed

18

