

Updates from the measurements group Jarek Nowak 09/25/2015

Lancaster University

New DUNE working groups

- The structure of the protoDUNE groups was change.
- There is a new ProtoDUNE Sim Reco and Analysis Working Group under the Software and Computing WG
- However, there is obviously a strong connection with the Detector Prototype WG
- The group website is (<u>https://web.fnal.gov/collaboration/</u> <u>DUNE/SitePages/ProtoDUNE%20Sim%20Reco%20and</u> %20Analysis%20Working%20Group.aspx)

Meetings

- Next meeting will be next week (Physics week) and the meeting will be every other week.
- Doodle poll for the new time of the meeting
- http://doodle.com/poll/xqp95nvty5kc25nsh3v3udxf/ admin#table

Elizabeth W.

protoDUNE MC Status

- MC Details:
 - LArSoft dunetpc v04_23_00
 - Geometry: protoDune_v1
 - New protoDune services:
 - protoDune_services
 - protoDune_simulation_services
 - protodune_photonvisibilityservice (thanks to A. Himmel for generating the photon library)
 - Sample fcl files in dunetpc/fcl/protodune/
- MC Samples:
 - μ⁺, μ⁻, π⁺, π⁻, p, e⁻, K⁺
 - Includes subset of samples with vertical beam angle +6°
 - Details of generated samples: http://www.phy.bnl.gov/~etw/protodunemc.html
- Status of generation:
 - Root files in /pnfs/lbne/scratch/users/protoDuneProd/
 - Full detector simulation: detsim_protodune_<PARTICLE>_<ENERGY>_<JOBNO>.root
 - Detector simulation jobs still in progress
 - Standard reconstruction will be run with output in same area: reco_protodune_*.root
 - Still learning most efficient methods for grid generation likely some files will be missing this
 round of generation next round should go more smoothly
 - Please contact ETW with any problems analyzing the MC output or requests (data products and/or additional samples) to include in next generation

MC samples

- We now have a number of MC sample for studies.
- Information about existing MC will be send to the reconstruction algorithms developers for study.
- We need someone to run the reconstruction algorithms and compare results.

protoDUNE geometry file

- The first version of the geometry is in the repository and was used for the MC generation.
- The next step will be to include the beam window (Matt K. is working on this. More in Cheng-Ju's talk).
- More details of the detector, cryostat and building will need to be included (particularly important for the cosmic muons studies)

Other short term tasks

- Investigate the design decision with reconstructed/ cheated variables. (beam window location, entry point)
- Adapt the cosmic Monte Carlo for protoDUNE
- Overlay cosmic muon MC with beam MC

Proposed measurements and tasks

Shower calibration (6 FTE)

- E-M showers (π^0, γ, e)
- Hadronic showers (π^{\pm}, K^{\pm}, p)
- Various energies

Angular dependence (1FTE)

- Recombination using different angles of the beam and secondary particles
- Bethe-Bloch parameterization of charged particles and PID (8FTE)
 - Each particle, and for various energies and angles
- Reconstruction effects (3 FTE)
 - Difficult angles, 2D vs. 3D reconstructions (validation of reconstruction)
- e/γ separation (1 FTE)

Cross section measurements (2FTE)

Elastic scattering, absorption, charge exchange

Summary

- Since the collaboration meeting:
- New structure of the WGs.
- First MC samples with protoDUNE geometry.
- Cast you vote for the meeting time!

Measurements Programme

- In the proposal we presented an ambitious physics programme
 - Physics measurements: pion/kaon cross sections, ...
 - Reconstruction development and validation
 - MC validation and improvements

Proposed measurements

- Supernova and Michel electrons (1 FTE)
- Charge sign determination (1FTE)
- Proton decay sensitivity and background samples (1FTE)
- Anti-proton annihilation (1FTE)
- Veto cosmic muons and beam halo (1FTE)

Reconstruction

- There are several automatic reconstruction algorithms
 - PANDORA, Projection Matching, Wire-Cell, Cluster 3D.
 - There are significant differences between them.
 - They are at different levels of sophistication.
- protoDUNE will be unique as it will provide data of charged particles with good energy resolution and known type of the particles

Proposed beam for protDUNE Run1 (2018)

Particle	Momenta (GeV/c)	Sample	Purpose
		Size	
π^+	0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 5, 7	10k	hadronic cal, π^0 content
π^{-}	0.2, 0.3, 0.4, 0.5, 0.7, 1	10k	hadronic cal, π^0 content
π^+	2	600k	π^o/γ sample
proton	0.7, 1, 2, 3	10k	response, PID
proton	1	1M	mis-ID, PD, recombination
e^+ or e^-	0.2, 0.3, 0.4, 0.5, 1, 2, 3, 5, 7	10k	e- γ separation/EM shower
μ^{-}	(0.2), 0.5, 1, 2	10k	E_{μ} , charge sign
μ^+	(0.2), 0.5, 1, 2	10k	E_{μ} , Michel el., charge sign
$\mu^- \text{ or } \mu^+$	3, 5, 7	5k	E_{μ} MCS
anti-proton	low-energy tune	(100)	anti-proton stars
K ⁺	1	(13k)	response, PID, PD
K ⁺	0.5, 0.7	(5k)	response, PID, PD
$\mu,$ e, proton	1 (vary angle $\times 5$)	10k	reconstruction

Reconstruction validation for protoDUNE

- Event reconstruction tests and validation is to
 - validate algorithms for unique situation (known primary particle, lots of cosmics)
 - compare efficiencies between algorithms
 - compare computing requirements (for future live monitoring of the detector)
- The samples for validations will be produced by Elizabeth
- Here we show only the results for the Projection Matching algorithm.
 - nominal 6 degree up, 10 degree off the wire planes
 - add horizontal & vertical ±15 degree spread to see if any effect

Preliminary list of validation metrics

- vertex and angular resolution for primary particles
- vertex and angular resolution for secondary particles
- multiplicities of secondary particles
- PIDs (efficiencies and purity)
- Energy deconvolution