

LONG-BASELINE PHYSICS WORKING GROUP PHONE MEETING

29 September 2015 S. Pascoli, T. Patzak, E. Worcester

Overview

- Introduction & Organization
- Interface with other groups
- Task List
 - Needs
 - Current work
- Timeline
- Roundtable

Long-baseline PWG Charge

- Extend understanding of DUNE physics reach
- Continue to build & defend scientific case for DUNE
- Develop analysis strategies for oscillation analyses
- Participate in the 3 task forces, all of which are related to long-baseline physics
 - Beam Optimization TF
 - Near Detector Optimization TF
 - Far Detector TF
- Provide input as needed to other DUNE WGs
 - Sim/Reco WG
 - FD Physics Performance WG
 - Calibration WG
 - protoDUNE Measurements WG
 - Others?

Organization

- Physics coordinator:
 - Jon Urheim: <u>urheim@indiana.edu</u>
- Physics deputy coordinator:
 - Ryan Patterson: rbpatter@caltech.edu
- Long-baseline PWG conveners:
 - Silvia Pascoli: <u>silvia.pascoli@durham.ac.uk</u>
 - Thomas Patzak: patzak@apc.in2p3.fr
 - Elizabeth Worcester: <u>etw@bnl.gov</u>
- Sharepoint webpage:
 - <u>https://web.fnal.gov/collaboration/DUNE/SitePages/Long-baseline</u> <u>%20Working%20Group.aspx</u>
- Mailing lists:
 - Long-baseline WG: <u>dune-physics-lbl@fnal.gov</u>
 - Meeting announcements will also be sent to dune-physics@fnal.gov
 - Systematics list: <u>dune-physics-syst@fnal.gov</u>
- Meeting time: Tuesday, 10 CT, DUNE Physics Weeks

Existing Tools

- GLoBES configurations (CDR)
 - Signal and background efficiencies and smearing from Fast MC
 - Normalization uncertainties only
- "New" GLoBES
 - More detailed systematics treatments possible
- Fast MC
 - Reweighting technique
 - Parameterized detector response at individual particle level
- MGT (GLoBES based fitting framework)
 - "Regular" GLoBES fits
 - Include individual sources of systematic uncertainty
 - Statistical ensembles of experiments
- VALOR
 - Near/far oscillation fitting framework developed in context of T2K
- LArSoft simulation/reconstruction

All of these would benefit from additional experts who can effectively use and further develop these tools.

Input Requests from other WGs

- Simulation/Reconstruction WG:
 - Priorities for sim/reco studies
- FD Physics Performance WG:
 - Detector performance requirements
- Calibration WG:
 - Detector performance requirements
- protoDUNE Measurements WG
 - Input on needed measurements
 - Evaluation of impact of measurements
- Beam Optimization TF:
 - Input on optimization metric
 - Machinery to evaluate beam options
- Near Detector Optimization TF:
 - Machinery to perform fit to four FD samples with systematics constraints applied
- Far Detector TF:
 - Algorithms and machinery to produce sensitivity estimates using reconstructed FD MC quantities
 - Define data structure requirements for FD MC output

Conveners of other WGs, please let us know if we've missed anything...

Sim/Reco WG

- Initial WG plans include:
 - Generating MC samples of beam neutrinos (v_e, v_{\mu}, v_{\tau})
 - Further developing reconstruction algorithms and evaluating their efficiency
 - Producing samples with different detector configurations (eg: wire pitch, wire angle) to evaluate design options
- Suggested additional studies:
 - Studies of single particle reconstruction efficiency, resolution, and bias using DUNE LArSoft for improving/justifying Fast MC inputs
 - Particle ID studies (eg: e/g separation) using DUNE LArSoft for improving/justifying Fast MC inputs
 - Study of reconstruction across multiple TPCs
 - Study of fiducial volume cuts
- We will need to collaborate closely with the Sim/Reco group to determine data format for full MC-based analysis

FD Physics Performance WG

- This is a detector WG tasked with making sure that the detector is designed to meet the physics performance requirements and coordinate a "FD technical board."
- Will work together with the physics WGs to determine detector design parameters needed to meet the physics requirements.
 - eg: In the long-baseline PWG, we might set a requirement on vertex resolution. The FD physics performance group would take that input and (in collaboration with other working groups) set requirements on wire pitch, etc.
- Input needed: detector performance requirements

Calibration WG

- Input needed: requirements on knowledge of detector response as function of position and time
- Calibration WG will be designing a calibration program that includes physics analyses (tagged events, etc) – should be some overlap with LBPWG analysis topics

protoDUNE Measurements WG

 Now integrated into DUNE WG structure as protoDUNE Sim/Reco/ Analysis WG under Software & Computing

- Input needed: together with Calibration WG, what measurements are needed in protoDUNE to enable the long-baseline physics?
- protoDUNE will be working on sim/reco/analysis topics should be some overlap with LBPWG topics

Beam Optimization TF

ND Optimization TF

 LBPWG Responsibility: Perform fit to 4 FD samples, including systematic uncertainties and constraints from ND (VALOR) analysis

Far Detector TF

1

LBL WG	itehead
 Main goal for the LBL WG is to develop algorithms to analyze a sample provided by the FD sim/reco WG and produce sensitivi No need to wait for a "real" MC sample - start developing now (b on Fast MC, for example) 	MC ties. ased
 Decide on analysis framework and the basic file structure that be handed off from FD sim/reco WG to the LBL WG Analysis framework: Within LArSoft? Outside of LArSoft? File structure: What reconstructed variables? What truth variable 	will Note: Should we consider
 In conjunction with other physics WGs (atmospheric nus, SNB, et software people 	c) and with SBN?
 My interpretation of this part of the charge is that we are developing the <i>capability</i> to produce sensitivities with a full FI Sensitivities produced this way might not be very good at first (or match our GLoBES estimates) We'll probably need to work out some kinks in the sim/reco chair work on systematics, or perhaps develop more sophisticated part ID algorithms 	D MC. n, ticle

Task List (I)

- Sensitivity experts needed to quickly evaluate experimental sensitivity in light of new developments
 - Excellent opportunity for student or new collaborator to engage with long-baseline physics
 - Experts responsible for previous sensitivity studies largely unavailable
 - Jeremy Hewes maintains scripts to create standard sensitivity plots
 - Matt Bass, Dan Cherdack, Elizabeth Worcester available to support GLoBES, Fast MC, and MGT studies
 - Sam Kohn getting up to speed on sensitivity calculations
- Fast MC Development: Implement analysis algorithms and update inputs
 - Dan Cherdack will continue as FMC developer

Task List (II)

- Systematics studies
 - Explore effect of beam variations, cross-section uncertainties, uncertainties in detector effects; set requirements on these uncertainties
 - Jeremy Hewes started looking at implementation of NuMI beam variations from Minerva flux correlation matrix and is available to support further work
 - Sam Zeller plans to hire a new postdoc to work on interactions and cross-section systematics
 - Lisa Whitehead's student, Cassandra Morris, getting up to speed on FMC studies
 - Elizabeth Worcester studying energy resolution and bias uncertainties using FMC/MGT
 - Michel Sorel evaluating detector performance effects with LArSoft
- Neutrino interactions experts needed to keep up with experimental results, new models, new versions of interaction generators that will affect long-baseline systematics

Task List (III)

- LArSoft studies to evaluate Fast MC inputs
 - Current inputs to Fast MC based on literature, best guesses, MC simulations from other LArTPC experiments
 - Need DUNE-specific MC studies for single particle detection efficiency, energy resolution and bias, particle ID efficiency
 - Tyler Alion analyzing LArSoft handscan for ν_{e} appearance efficiencies
- Determine inputs and data format required from near and far detector simulations to feed into oscillation analysis
 - Dan Cherdack will facilitate interface between ND TF and LBPWG
- Develop oscillation analysis for DUNE

Task List (IV)

- Additional physics analyses
 - Neutral current
 - v_{τ} appearance
 - NSI
 - Joachim Kopp did a GLoBES-based study for LBNE
 - Fernando Torres now working on this
 - Long-range interactions
 - Mixing with sterile neutrinos, including impact of a sterile that could be discovered in SBN on oscillation analyses
 - Large extra dimensions
 - Lorentz/CPT violation
 - Jorge Diaz will provide theory support for this analysis)
 - Unitarity test
 - Model independent sensitivity to MH/CPV?
 - More...
 - Silvia Pascoli will provide theory support for standard and nonstandard oscillation physics

Timetable

- Highest priority must be work supporting the task forces as they are expected to have preliminary results by summer 2016
- Near-term Goals:
 - October 2015: Identify workers for all highest priority tasks
 - January 2016 Collaboration Meeting: Workers up to speed on tools and able to present initial studies and plans
 - March 2016 (6 months):
 - DUNE-specific LArSoft studies for Fast MC inputs
 - NuMI-based beam systematics implemented
 - Detector performance requirements established
 - First pass at analysis of FD MC samples with ND constraints applied

Roundtable

- For each group or individual on the phone, please tell us:
 - Your name(s)
 - Your institution
 - Number of people in group
 - Interest in long-baseline PWG
 - Interest in working on a specific task?
 - Interest in working on a task not listed?
 - Want to contribute but need suggestions for an appropriate task or need help getting started?
 - Just here to keep up with LBPWG activities but not able to contribute effort? (This is ok too!)