Near Detector Optimization Task Force

Steve Brice, Daniel Cherdack, Kendall Mahn

Draft Charge to the Task Force

□ The near detector optimization task force is charged to:

- Develop GEANT4 simulations of the reference design near detector and possible alternatives
- Perform a full end-to-end simulation connecting the measurements in the near detector to the far detector systematics using, for example, the VALOR framework
- Evaluate the potential benefits of augmenting the reference design with
 - a LAr-TPC
 - the use of a High Pressure Gaseous TPC
- Produce a first report on their findings to the DUNE Technical Board by July 2016 and a final report by December 2016.

□ We have begun by developing a few axioms ...

Axioms

- The Task Force will evaluate ND options based just on science
 - Budgetary and other concerns can wait
 - Task force charged with making science based recommendations and any decisions by the collaboration will likely include other factors.
- Near Detector performance is judged by its ability to improve the sensitivity of DUNE to CPV
 - Any Near Detector optimized this way will be very capable of the other analysis envisaged for the Near Detector
 - Sensitivity to other physics will be a secondary consideration; cannot degrade oscillation physics
- The ND should allow for measurements on the same target nucleus as the FD (Ar)
 - T2K oscillation systematics increased by target nucleus differences
 - Should include a clear and proven path to extracting cross section measurements on the target nucleus

How to Optimize the CP Violation Oscillation Analysis

- Adopt and extend the approach of the experiment that is presently at the cutting edge of this work – T2K
- Use the VALOR package for ND fits
 - Inputs
 - Event samples from simulations of the Near Detector options
 - Detailed systematic uncertainties (spectral changes, and priors)
 - Outputs
 - Fits of all possible nuisance parameters for a FD fit
 - A covariance matrix that encodes all prior and correlations
- Oscillation parameter fits with FD event samples
 - Several current tools in use and development
 - A full VALOR ND+FD fit is also a good possibility

Interaction and Communication with Working Groups

- Physics
 - Far Detector WG
 - Near Detector Physics WG
- Near Detector
 - Straw Tube Tracker WG
 - Liquid Argon TPC WG
 - Gaseous Argon TPC WG
 - ND Evaluation WG
- Software and Computing
 - Beam Sim & Syst WG

- The work needs to be owned and carried out by the WGs
- NDTF leaders will attend working group meetings
- NDTF leaders, Conveners, and WG leaders will meet as needed
- Each link in the processing chain (see next slide) will have a point of contact

Simulation and Analysis Path

Flux Simulation and Uncertainties

- Outputs compatible with GENIE flux driver
- Incorporates DK2NU
- Beamline optics uncertainties
- Additional NDTF Needs
 - Hadron production uncertainties
 - Flux covariance matrix encode all uncertainties
 - Stopgap solution: Use Minerva correlation matrix with G4LBNE normalization uncertainties

Cross Section and Nuclear Models, and Uncertainties

- Point(s) of Contact being discussed
- GENIE already meets many simulation needs
 - Flux driver interface
 - Event generation
- Several key requirements
 - Improved initial nuclear state models
 - Understand FSI model uncertainties and related correlations
 - Retuned systematics with "modern" parameterizations
 - External comparisons / validation

Near Detector Response Simulations

- Points of Contact: Tyler Alion (FGT), Sarah Lockwitz (LAr), Georgios Christodoulou (GAr)
- Event sample (GENIE) files will be provided
- Provide reconstructed quantities for each event
 - Fast MC style simulations
 - Full GEANT4 simulations
- Outputs:
 - Events samples for analysis (in a uniform format)
 - Detector related systematics (e.g. acceptances, energy scales)

Simulation

- Point of Contact: Costas Andreopoulos
- Well tested software package developed for T2K and expanded for LBNE, LBNO, and T2HK
- Topologically selected event samples
- Combined fit of all event samples
- Nuisance parameters of the fit cover all sources of uncertainty
- Produces a "post-fit" covariance matrix encoding all ND constraints
 - Directly determine impact on uncertainties
 - Input to FD oscillation fits

Far Detector Response Simulation

- Point of Contact: Elizabeth Worcester
- Generate event samples for combined fits
- Estimate acceptance and energy scale uncertainties
- Currently use a parameterized det. resp. (Fast MC)
 - Works well, but may miss subtleties of a full simulation
 - Needs to be updated based on the latest studies and microBooNE data
- Full det. resp. simulation and reconstruction timescale?

Oscillation Analysis Fits and Metrics for the NDTF

LBPWG

FoM

NDTF

FD Fit

- Point of Contact Dan Cherdack
- Combined fit of 4+ FD samples
 - Current GLoBES based software (MGT)
 - New analysis package / fitting code
- Nuisance parameter constraints
 - Encoded in covariance matrix
 - One matrix per ND configuration
 - Compare with no ND, as well δ
- Study sensitivity to CPV / cp resolution
- Determine metrics which encapsulate the impact of each ND on the studies
 - Report will primarily consider CPV
 - Secondary consideration given to measurements of other oscillation parameters and the science program of the ND

Short Term Goal

- Short Term Goal: Conduct a complete run through of the entire machinery as soon as possible
 - Stripped down and corners cut
 - Discover major issues as soon as possible
 - Give the wider collaboration a better sense early on for how this will all work
- Focus on machinery and interfaces
- Three Questions being addressed by each link in the chain
 - What is in place now?
 - What need to be in place for a first run through of the machinery?
 - What could/should be put in place in the next 12 months?

Schedule

Phase 1 - focus on machinery

Sept 2015 - Jan 2016

- Milestone 1: First complete run through of the machinery
 - Jan 2016

Phase 2 - incrementally improve the physics and simulations

Jan 2016 - Mar 2017

- Milestone 2: Run through to generate material for initial report
 - August 2016
- Milestone 3: Initial Report
 - September 2016
- Milestone 4: Final run through to generate material for final report
 - February 2017
- Milestone 5: Final Report
 - March 2017