Strangeness production in small collision systems at the LHC

Livio Bianchi
University of Houston

US-LUA Meeting 2015 – Fermilab
13 November 2015
Introduction
Strangeness production extensively studied in A-A:

- Strangeness enhancement (original idea)
- Canonical suppression in pp
- Λ/K^0_S enhancement at intermediate p_T
Strangeness production extensively studied in A-A:
- Strangeness enhancement (original idea)
- Canonical suppression in pp
- Λ/K_S^0 enhancement at intermediate p_T

More recently studied in p-A:
- Progressive release of canonical suppression
- Λ/K_S^0 qualitatively similar to Pb-Pb
Strangeness production extensively studied in A-A:
- Strangeness enhancement (original idea)
- Canonical suppression in pp
- Λ/K_S^0 enhancement at intermediate p_T

More recently studied in p-A:
- Progressive release of canonical suppression
- Λ/K_S^0 qualitatively similar to Pb-Pb

What about pp?
Detecting strange particles in ALICE
A Large Ion Collider Experiment

DETECTORS USED IN THIS ANALYSIS:
A Large Ion Collider Experiment

DETECTORS USED IN THIS ANALYSIS:

ITS (|\(\eta|\)<0.9)
6 layers of silicon detectors:
trigger, tracking, vertex, PID (dE/dx)
DETECTORS USED IN THIS ANALYSIS:

ITS ($|\eta|<0.9$)
6 layers of silicon detectors:
trigger, tracking, vertex, PID (dE/dx)

TPC ($|\eta|<0.9$)
Gas-filled ionization detection volume:
tracking, PID (dE/dx)
DETECTORS USED IN THIS ANALYSIS:

ITS (|η|<0.9)
6 layers of silicon detectors:
trigger, tracking, vertex, PID (dE/dx)

TPC (|η|<0.9)
Gas-filled ionization detection volume:
tracking, PID (dE/dx)

V0 (2.8<η<5.1 (V0A) &
-3.7<η<-1.7 (V0C))
Forward arrays of scintillators:
trigger, beam gas rejection,
multiplicity estimation
DETECTORS USED IN THIS ANALYSIS:

ITS (|\(\eta\)|<0.9)
- 6 layers of silicon detectors: trigger, tracking, vertex, PID (dE/dx)

TPC (|\(\eta\)|<0.9)
- Gas-filled ionization detection volume: tracking, PID (dE/dx)

HOW DO WE ESTIMATE MULTIPLICITY:

- Use forward rapidity estimator V0M (sum of amplitudes in V0A & V0C)
- For each V0M multiplicity class we take the average of the distribution of charged tracks in |\(\eta\)|<0.5: \(\langle dN_{ch}/d\eta \rangle\)

V0 (2.8<\(\eta\)<5.1 (V0A) & -3.7<\(\eta\)<-1.7 (V0C))
- Forward arrays of scintillators: trigger, beam gas rejection, multiplicity estimation
Results
Spectra get harder for higher multiplicity.

Ratio
$\text{SPEC}_{\text{bin-i}} / \text{SPEC}_{\text{INEL}}$
constant for $p_T \gtrsim 4$ GeV/c for K^0_S and Λ

Levy-Tsallis fits performed in order to extract yields (low-p_T extrapolation)
Spectra get harder for higher multiplicity.

Ratio
\[\frac{\text{SPEC}_{\text{bin-i}}}{\text{SPEC}_{\text{INEL}}} \]
constant for \(p_T > \approx 4 \text{ GeV/c} \) for \(K_S^0 \) and \(\Lambda \)

... and also for \(\Xi \) and \(\Omega \)

Levy-Tsallis fits performed in order to extract yields (low- \(p_T \) extrapolation)
• Momentum range 0.1(0.3)-20 GeV/c for $\pi(p)$, combining PID information from ITS+TPC+TOF
• Low p_T: hardening with increasing multiplicity, more pronounced for protons
• Spectral shapes unaltered at high p_T
The hardening of the spectra can be quantified looking at the $\langle p_T \rangle$ as a function of multiplicity.

Raising trend of $\langle p_T \rangle$ with the multiplicity for all identified particles (logarithmic fit to guide the eye)
The ratio depends on the event multiplicity in a qualitatively similar way as in p-Pb and Pb-Pb.

The magnitude is smaller in pp with respect to p-Pb and Pb-Pb, but note that for similar percentiles $\langle dN_{ch}/d\eta \rangle$ changes dramatically among the three systems.
Λ/π ratio as a function of multiplicity in pp:

- Very good agreement with INEL result at low mult.
- Follows the same trend observed in p-Pb
Λ/π

Λ/π ratio as a function of multiplicity in pp:

- Very good agreement with INEL result at low mult.
- Follows the **same trend** observed in p-Pb

Pythia6 and 8 with several tunes (P-0, P-2011, 4C, Monash) considered: **strong disagreement** with observed trend.

CR does not change the prediction significantly.
Λ/π and Ω/π
Ξ/π and Ω/π ratios as a function of multiplicity in pp:

- In very good **agreement with INEL** result at low multiplicity
- **Seated** precisely on top of the p-Pb datapoints
- Reaches GC saturation value (THERMUS and GSI-Heidelberg models) in the case of Ξ. It stays below in the case of Ω.
Ξ/π and Ω/π ratios as a function of multiplicity in pp:

- In very good agreement with INEL result at low multiplicity
- Seat precisely on top of the p-Pb datapoints
- Reaches GC saturation value (THERMUS and GSI-Heidelberg models) in the case of Ξ. It stays below in the case of Ω.

Pythia6 and 8, with several tunes (P-0, P-2011, 4C, Monash) considered: strong disagreement with observed trend. CR does not change the prediction significantly.
How fast does the \(h/\pi \) ratio increase for the different species?

We plot \(\frac{[h/\pi]_{\text{system}}}{[h/\pi]_{\text{pp INEL}}} \)

The relative increase with multiplicity is more pronounced for baryons with higher strangeness content.

The increase is \textit{strangeness-related and not baryon-related}, since for protons the ratio remains constant from \(\langle N_{ch}\rangle_{\text{INEL}} \) up to highest \(\langle N_{ch}\rangle \) probed.

Systematics are LARGELY correlated across multiplicity!
Study of strange particle production as a function of the multiplicity in small systems at the LHC with ALICE

Λ/π, Ξ/π and Ω/π ratios:

• increase as a function of \(\langle dN_{\text{ch}}/d\eta \rangle \) with the same trend as observed in p-Pb
• baryons with higher strangeness content exhibit larger increase with multiplicity
• Pythia6 and Pythia8(Monash) do not reproduce the observed trend

Λ/K_S^0 ratio as a function of \(p_T \):

• shows a qualitatively similar trend as the same quantity measured in p-Pb and Pb-Pb
Backup
Multiplicity classes and \(\langle dN_{\text{ch}}/d\eta \rangle \)

| \(K_S^0 \) and \(\Lambda \) | \(\langle dN_{\text{ch}}/d\eta \rangle |\eta|<0.5 \) | \(\Xi \) | \(\Omega \) | \(\langle dN_{\text{ch}}/d\eta \rangle |\eta|<0.5 \) |
|---|---|---|---|---|
| 0 - 1% | 21.29±0.04±0.64 | 0 - 1% | 21.29±0.04±0.64 | 0 - 5% | 17.47±0.02±0.52 |
| 1 - 5% | 16.51±0.01±0.50 | 1 - 5% | 16.51±0.01±0.50 | 5 - 15% | 12.48±0.01±0.38 |
| 5 - 10% | 13.46±0.01±0.40 | 5 - 10% | 13.46±0.01±0.40 | 15 - 30% | 8.99±0.01±0.27 |
| 10 - 15% | 11.51±0.01±0.35 | 10 - 15% | 11.51±0.01±0.35 | 15 - 30% | 8.99±0.01±0.27 |
| 15 - 20% | 10.08±0.01±0.30 | 15 - 30% | 8.99±0.01±0.27 | 15 - 30% | 8.99±0.01±0.27 |
| 20 - 30% | 8.45±<0.01±0.25 | 30 - 50% | 6.06±<0.01±0.19 | 30 - 50% | 6.06±<0.01±0.19 |
| 30 - 40% | 6.72±<0.01±0.21 | 30 - 50% | 6.06±<0.01±0.19 | 30 - 50% | 6.06±<0.01±0.19 |
| 40 - 50% | 5.40±<0.01±0.17 | 50 - 70% | 3.90±<0.01±0.14 | 50 - 100% | 2.89±<0.01±0.14 |
| 50 - 70% | 3.90±<0.01±0.14 | 50 - 70% | 3.90±<0.01±0.14 | 50 - 100% | 2.89±<0.01±0.14 |
| 70 - 100% | 2.26±<0.01±0.12 | 70 - 100% | 2.26±<0.01±0.12 | 70 - 100% | 2.89±<0.01±0.14 |

\[
\langle dN_{\text{ch}}/d\eta \rangle^{\text{MAX}} \approx 3.5 \ (3) \times \langle dN_{\text{ch}}/d\eta \rangle^{\text{INEL}}
\]
Topological cuts

V0.a

DCA V0 Neg. daughter to Prim. Vtx

V0 b

DCA between V0 daughters

V0 c

Prim. Vtx

DCA V0 to Prim. Vtx

Casc.a

Bachelor : π^-

DCA Bachelor to Prim. Vtx

Casc.b

DCA between Ξ^- daughters

Casc + V0.d

R_{max}

R_{min}
Strange particles signal

Several topological cuts tuned in order to optimize S/B

PID performed with TPC for all the 2(3) V0(cascade) decay daughters

Bin-counting technique applied to extract yields
Acceptance \times \text{efficiency correction}

Acceptance \times \text{efficiency (A}\times\varepsilon) \text{ estimated through Pythia-Perugia0 simulation propagated through full ALICE geometry using Geant3.}

\Xi^- \text{ and } \Omega^- \text{ corrections were obtained using a Monte Carlo sample with enriched cascade content}

A\times\varepsilon \text{ verified to be independent of the charged particle multiplicity}
The multiplicity-integrated trend is more similar to the one observed at high multiplicity rather than to the one observed at low multiplicity.
h/π ratio normalized to the ratio at the high multiplicity limit as a function of charged pion multiplicity...

... together with THERMUS curves for the three species (T=156±10MeV, R=R_c, γ_s=1, μ_B=μ_Q=μ_S=0)

The canonical suppression picture is in qualitative good agreement with the experimental results.