Heavy Ion Jet Results from CMS

Hallie Trauger
(University of Illinois at Chicago)
for the CMS Collaboration

US LHC Users Association Meeting
November 13, 2015
High-\(p_T\) Probes of the Quark Gluon Plasma

- PbPb collisions (and pp reference) at 2.76 TeV
- High-\(p_T\) partons are produced in initial hard scatterings
- Partons are used as probes passing through the QGP
- Select a sample of back-to-back dijets
High-p_T Probes of the Quark Gluon Plasma

- PbPb collisions (and pp reference) at 2.76 TeV
- High-p_T partons are produced in initial hard scatterings
- Partons are used as probes passing through the QGP
- Select a sample of back-to-back dijets

Dijet asymmetry:
\[A_J = \frac{(p_{T,1} - p_{T,2})}{(p_{T,1} + p_{T,2})} \]
High-p_T Probes of the Quark Gluon Plasma

- PbPb collisions (and pp reference) at 2.76 TeV
- High-p_T partons are produced in initial hard scatterings
- Partons are used as probes passing through the QGP
- Select a sample of back-to-back dijets

- Dijet asymmetry:
 \[A_J = \frac{(p_{T,1}-p_{T,2})}{(p_{T,1}+p_{T,2})} \]

- Asymmetric dijets (large A_J) balancing distribution:
 - pp: more $p_T>4$ GeV
 - PbPb: mostly $p_T<2$ GeV
Angular Distribution of Missing-p_T

- Missing p_T vs. radius parameter $\Delta = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$

Focus on unbalanced dijets

- **PbPb central:**
 soft excess to large Δ

- **pp and peripheral:** more particles with $p_T > 4$ GeV
 (also to large angles)

$A_J > 0.22$

$5.3 \text{ pb}^{-1} (2.76 \text{ TeV})$

$p_{T,1} > 120; p_{T,2} > 50 \text{ GeV}$

$|\eta_1,|\eta_2| < 0.6; \Delta \phi_{1,2} > 5\pi/6$
Dijet Correlated Yield Studies

- Construct 2D $\Delta\eta$-$\Delta\phi$ correlations to leading and subleading jet axes
- Subtract combinatorial and long-range correlated background (measured on $1.5<|\Delta\eta|<2.5$ in “sideband” technique)
- Study each jet peak individually

“Sideband” region $1.5<|\Delta\eta|<2.5$
Jet Peak Modifications

- Measure jet shape from background-subtracted correlations:

\[\rho(r) = \frac{1}{dr} \frac{1}{N_{\text{jet}}} \sum_{\text{jets}} \frac{\sum_{\text{tracks}}(r_a, r_b) p_T^{\text{track}}}{p_T^{\text{jet}}} \]

- Ratio \(\rho(\Delta r)_{\text{PbPb}}/\rho(\Delta r)_{\text{pp}} \) shows redistribution of \(p_T \) to large angles (carried by soft particles)
Per-Jet Particle Yields

- Look at modifications to distributions of charged particles by p_T

Central PbPb: enhancement of low-p_T ($1<p_T<2$ GeV) particles
- Enhancement present in leading, larger for subleading jets
Per-Jet Particle Yields

- Look at modifications to distributions of charged particles by p_T

Central PbPb: enhancement of low-p_T particles
- Present in leading, larger for subleading jets
- Integrate this excess: jet peak yield by track-p_T
Decomposing Hemisphere p_T Balance

Hemisphere p_T balance by $\Delta \phi$
- Low-p_T excess in PbPb central collisions enhanced
- Less high-p_T tracks relative to pp reference

Now decompose into...
- Leading jet peak
- Subleading jet peak
- Overall subleading-to-leading long range asymmetry (measured on $1.5<|\Delta \eta|<2.5$, $\Delta \eta$-independent)
Decomposing Energy Balance: Jet Peaks

Jet peak contributions for balanced dijets:

• Enhancement of momentum carried by low-\(p_T\) tracks about both leading and subleading jets

• Follows expectations from correlated yield studies
Jet peak contributions for balanced dijets:

- Enhancement of momentum carried by low-p_T tracks about both leading and subleading jets
- Follows expectations from correlated yield studies

PbPb – pp, subleading – leading gives contribution to hemisphere balance:
Decomposing Energy Balance: Long Range

- **In pp**: unbalanced dijets are accompanied by a long range excess of yield on the subleading side (momentum conservation/ 3-jet events)
- **In central PbPb**: disappearance of high-p_T long range asymmetry, growth of low-p_T long range asymmetry

"Sideband" region $1.5<|\Delta \eta|<2.5$
• **Three contributions to hemisphere momentum imbalance:**
 o Leading jet peak
 o Subleading jet peak
 o Long range $\Delta \eta$-independent asymmetry

• **Jet peaks:**
 o Excess momentum carried by soft particles ($p_T<$2 GeV) in central PbPb relative to pp
 o Suggests both leading and subleading jets are quenched

• **Long range asymmetry:**
 o pp: $\Delta \phi$-correlated excess of high-p_T (4-8 GeV) associated particles, attributed to additional jets as required by momentum conservation in unbalanced dijet events
 o PbPb (central): unbalanced jet selection includes more quenched 2-jet events and as 3rd jets present in this selection are quenched