

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

The Status of Ion Beam Therapy

Thomas Kroc PASI 2015 – Working Group 3, Medical Applications November 11-13, 2015

Early Years - US

- Bevalac
 - 1975 1993
 - 1200 patients (majority with neon)
 - Treatment program funding was secure
 - But operating funds for Bevalac itself were discontinued due to startup of RHIC and CEBAF

HIMAC - Japan

- Celebrated 20 years this January
- World leader in carbon ion therapy
- Has moved beyond development
 - 5 carbon ion centers

Other ion therapy sites

- Heidelberg Germany
- CERN/Enlight
 - CNAO Italy
 - MedAustron Austria
 - France
- China
 - Lanzhou
 - Shanghai

22m x 13m 600 tons Similar size as synchrotron

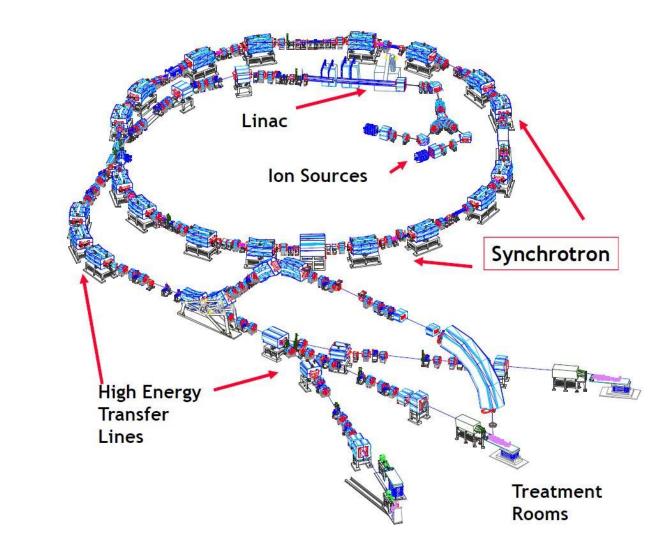
3

6

4

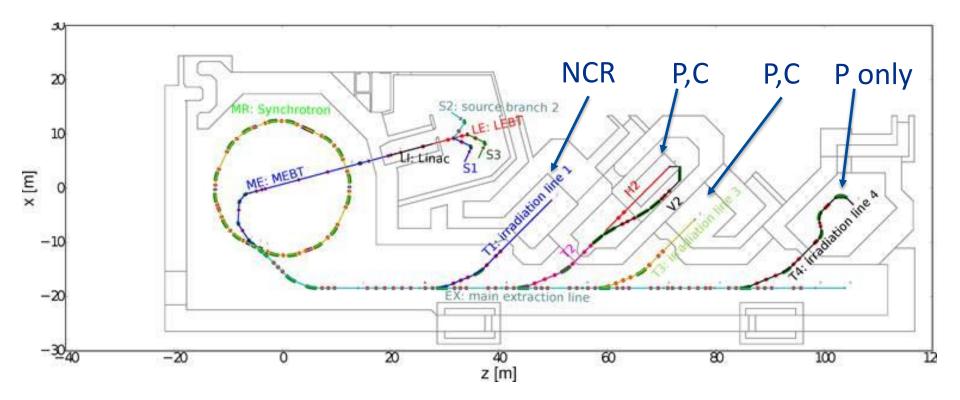
5

5



HIT

annan ann


1

2

CNAO

‡Fermilab

11/13/2015

MedAustron

Issues for ion therapy vs protons

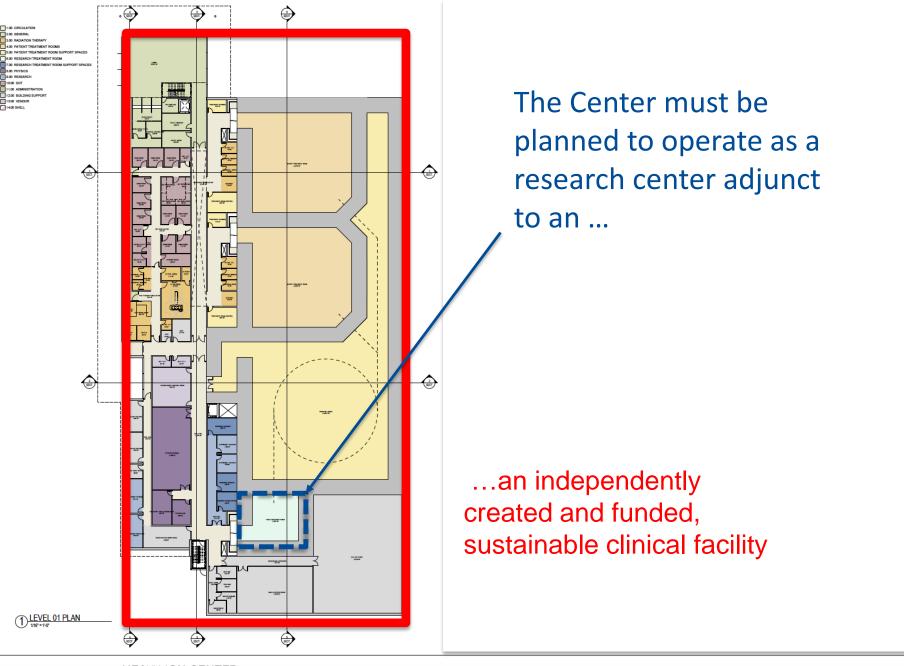
- Charge/mass twice that of protons
 - Doubles magnetic field or radius of magnets
 - Requires switching if doing proton CT with ion therapy
- Desired range requires higher MeV/nucleon
 - 240 MeV proton
 - 300 MeV/nucleon ions
- Multiple ion sources
- More complex radiobiology
 - More complex treatment planning
 - Iso-killing power vs isodose

What are the issues for this group?

- Can we make an order of magnitude reduction in size/cost?
- Is it really an accelerator issue ?
 - How important is size/cost?
 - Any lessons from Kirby, Beltran, Pankuch?
 - Will it become a control/complexity issue?

Recent US efforts

- DOE/NCI Workshop on Ion Beam Therapy
 - Jan. 2013
- Nov, 2012 Feb, 2013
 - Multi-Lab working group for a proton/ion center at Walter Reed Hospital
 - 0'th order cost estimate effort spread across 6 national labs
 - FNAL
 - SLAC
 - LBNL
 - BNL
 - JLAB
 - ANL



Recent US efforts

- DOE LAB 14-1142
 - Accelerator Stewardship Topical Areas
 - Particle Therapy Beam Delivery Improvements
 - Lawrence Berkeley National Laboratory, The Paul Scherrer Institute, and Varian Particle Therapy, Inc.
 - develop light weight superconducting magnet technology that will reduce the size and weight of particle beam delivery systems by nearly a factor of 10.
 - Massachusetts Institute of Technology and ProNova Solutions, LLC
 - Develop an innovative design for an ironless superconducting cyclotron
- DOE LAB 16-1438
 - Proposals due this month

- NCI PAR-13-371
 - Planning for a National Center for Particle Beam Radiation Therapy Research (P20)
 - The Center must be planned to operate as a research center adjunct to an independently created and funded, sustainable clinical facility for PBRT.
 - 2 Awards
 - National Particle Therapy Research Center
 - Specifications for research line
 - Monte Carlo Dose Engine
 - Management/infrastructure development
 - NAPTA: Optimizing clinical trial design & delivery of particle therapy for cancer
 - Integration of existing research
 - Range uncertainty/radiobiology
 - Management/infrastructure development

13 Medical GReKrocoff PASP 2015, WG 3, Ion Therapy

PERKINS+WILL 11/13/2015 FEASABILITY STUDY

- Other interests
 - Mayo Clinic
 - Joint Symposium on Carbon Ion Therapy May, 2013
 - Walter Reed National Military Medical Center 2012/2013
 - Effort involving 6 national labs to develop cost estimate and white paper for ion therapy center
 - Looked at synchrotron, cyclotron, and cyclinac options

22m x 13m 600 tons Similar size as synchrotron

3

6

4

5

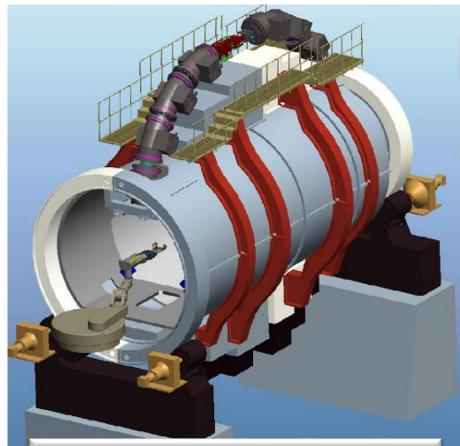
5

annannann.

1

2

Figure 5 The rotating gantry installed at the Heidelberg Ion Therapy Center facility



Durante, M. & Loeffler, J. S. (2009) Charged particles in radiation oncology Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2009.183

11/13/2015

Superconducting rotating-gantry

Weight: order of 300 tons

Use of superconducting (SC) magnets

Ion kind: 12 CIrradiation method: 3D ScanningBeam energy: 430 MeV/nMaximum range: 30 cm in waterScan size: $\Box 200 \times 200 \text{ mm}^2$ Beam orbit radius: 5.45 mLength: 13 m

The size and weight are considerably reduced

Conclusion

- Medical applications straddle too many boundaries to get much traction in the US
- The National Cancer Institute does not build hardware
- The Department of Energy does not perform medical research
- As can be seen in the history of proton therapy, the US model leaves late stage development and commercialization to industry
- While there are significant accelerator technology challenges yet to be faced, the larger issue for wide-scale utilization of ion beam therapy will be the economic integration of all the necessary functions – imaging, guidance, control, patient management, immobilization, etc.

So what do we need from an accelerator?

- Conform dose
- Change energy rapidly
- Range of ions ?
- Spot scanning
- Number of beams gantry
- Compact
- Cheap
- Looks like photon treatment

Precise

What do we need from an accelerator?

- Maximum dose to tumour
- Minimise effects to normal tissue
- Conform dose to tumour
- Hypo-fractionation dose escalation?
- Spot scanning
- Multiple beams Gantry design
- Range of ions
- Compact
- Cheap
- Easy to operate
- Faster throughput
 Reliable

The Christie