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Ovutline

Integrable optics at IOTA

Synergia 2.1 for beam dynamics simulations

Nonlinear dynamics in the zero current limit
* Higher order terms in the nonlinear Hamiltonian
« Variation with Ho and emittance
« Correlations between 1st and 2nd invariant
« Chromaticity correction schemes

Initial studies of nonlinear dynamics with space charge
* Tune depression
» Diffusive dynamics and phase space mixing
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Integrable Optics and the IOTA Iattice

* Experimental initiative to test nonlinear infegrable optics

— Danilov & Nagaitsev “Nonlinear accelerator lattices with one
and two analytic invariants,” PRSTAB 13, 084002 (2010)

* Use of special nonlinear magnet can result in a 2nd invariant
of moftion, completely integrable dynamics
— Single particle trajectories are regular and bounded
— Mitigate parametric resonances via nonlinear decoherence
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/\% " A Valishev, “IOTA - A Brief Parametric ~* D)
i Profile,” presented at Focused >
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Bunch matching with the nonlinear lattice

* Danilov & Nagaitsev derived potential
which produces Hamiltonian with 10
two analytic invariants

— Vary magnetic field strengths to
obtain order unity tune spread

—  Symmetric motion through NL
section preserves integrability

* A generalized K-V distribution
with fixed H demonstrates shape
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Beam dynamics with space charge via Synergia 2.1

Synergia: A comprehensive
accelerator beam dynamics package

http://web.fnal.gov/sites/synergia/SitePages/Synergia%20Home.aspx

# James Amundson, Qiming Lu, Alexandru
Fe r m I Iab Macridin, Leo Michelotti, Chong Shik Park,
(Panagiotis Spentzouris), Eric Stern and
Accelerator Simulation Group Timofey Zolkin

Computer time from INCITE
U S. DEPARTMENT OF ENERGY

INCITE

LEADERSHIP COMPUTING

4

The ComPASS Project
High Performance Computing for Accelerator Design
and Optimization
https://sharepoint.fnal.gov/sites/compass/SitePages/Home.aspx

Funded by DOE SciDAC

CA M PA Consor'tium for Advanced Modcling Funded by DOE

of Particle Accelerators
2= Fermilab

Slide courtesy of James Amundson | Advancing Particle Accelerator Science with High Performance Computing 11/12/15 6 /#




Synergia 2.1 Overview

« Capabilities include:
— symplectic fracking for single particle dynamics
— PIC (validated with GSI space charge benchmark)

— dynamic lattice element adjustments
* Fit tunes or chromaticities to desired values
« Construct arbitrary 6xé6 matrix elements

* New capabilities added by RadiaSoft:
— bunch matching with arbitrary distributions
— Inferactive simulations with an IPython notebook

Thanks very much to the Synergia development team, from the Accelerator
Simulation group within Fermilab’s Scientific Computing Division!

Especially: J. Admundson, E. Stern, C.S. Park, L. Michellotti, and P. Spentzouris
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Initial simulations - 100k turns with NL element

* Tracking matched proton bunch in lattice
— Generalized KV distribution with fixed Ho
= 0.03 mm-mrad normalized emittance

— 6 =0% — no variation in particle energy

* Resulting variation is consistent over 100k turns

— OH

— Periodic variation which appears bounded
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Higher order terms in the Nonlinear Hamiltonian

* Original analysis computed the single furn map for the
ideal infegrable optics lattice

* Expansion of the Hamiltonian lowest order correction to

H in v, the “tune-advance” through the nonlinear drift

1
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Next-order correction

* The leading order correction to the ideal Hamiltonian Ho
scales with vo®, thus implying a variation in H from the first

order estimate Hop
3
%:HOVO—I_HQVO + ...
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Variation in the first invariant - Hy

« Simulated a toy-model IOTA lattice, comprised of @
nonlinear element followed by a corresponding 6x6
matrix representing a thin double-focusing lens.

— Variations of the nonlinear element with different vo are
calculated using a MADX script

Standard Deviation in H versus phase advance v, Standard Deviation in | versus phase advance v,
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Variation in Ho with increasing emittance

« Greater variation in Ho with increasing emittance —
coefficients in the expansion of the Hamiltonian vary with &3.

« Ex. For a NL segment with vo =0.3, a KV distribution with Ho = 10

mm-mrad demonstrates an average r.m.s. variation of 5% in
calculated value of of Ho.
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Higher order correlations between H and |

« Turn by turn variation observed over many turns
— Variations appear bounded and well behaved

* Suggestive of some surface relating to a new invariant
— Can we calculate this hyper-surface?

Correlation between 1st and 2nd invariants - 10K turns
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Chromatic Considerations in IOTA

« Tests performed for matched bunches with energy deviations
6 £ 0.5%, with and without chromaticity correction

« Simulations of chromaticity corrected lattice
« Beam loss observed (4%) even for a bunch with 6 = 0.1%
and a normalized emittance of ex = 0.03 mm-mrad

« Invariant clearly not preserved - o1 > 15%
« As é approaches 0.4%, the majority of the beam is lost

* Uncorrected lattice retains better single particle dynamics
« Foré=0.1%, no particle loss and o1 = 10%

* Conclusion: Off-energy particles in IOTA are more sensitive to
sextupole fields than to natural chromaticity of the lattfice.

,,:_:':'_‘?::?\_:: ° R J |
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Chromaticity Correction Schemes

* Forredlistic energy spreads, chromaticity significantly
perturbs intfegrable motion
—2 —2)

F:ﬁO+AC(ﬁ?E—I—f2—py—y

 Recent work by Webb et al. presents a chromaticity correction

scheme which preserves integrability
Require equal horizontal and vertical chromaticities Cx = Cy,

« Sextupoles must be optically transparent (6¢ = (2n +1)x )
* Recover normalized Hamiltonian with adjustment to nonlinear

sfrength parameter, t
« Complete correction may not be needed!
« Carefully placed sextuples at low strength may correct for energy spread

* Current work aimed at adjusting IOTA-110 design to meet
these requirements for basic festing

14 /21
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Initial simulations with space charge

 Latfice Parameters:

lota vé.6 lattice with a single NL magnet

zero sextupole strength, zero RF

CHEF propagation of all lattice elements, 4 slices per element
Nonlinear strength parameter t = 0.4

Nonlinear aperture parameter ¢ = 0.01 m'/?

diagnostics at center of NL magnet

* Space Charge parameters:

2D open solver with 64x64 mesh, periodic in z
100 particles per cell

* Proton beam parameters:

2.5 MeV protons, matched at center of NL element
dp/p =0, to minimize chromatic effects
generalized KV distribution with first invariant Hy, = 9.74 mm-mrad

corresponds to exn= 0.3 mm-mrad, and ey,n = 0.6 mm-mrad
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Space charge tune shift in IOTA

* Linear lattice with zero current
— tunes are equal and vary weakly with amplitude
- Qx=Qy=0.3

* Nonlinear latfice with zero current

— funes are asymmetric and vary strongly with amplitude
— Qx=0.403 Qy=0.232 (very near the axis)

* With space charge, tune varies orbit to orbif ro N
0
— Compute incoherent tune shift ~ AQ), = 5 53
— Compare against single particle orbits Wexﬁ i

* Observe dQx ~ dQy (near axis)
* evidence of strong couplinginx andy
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Beam evolution at dQ = -0.01 IOTA lattice

Beam envelope evolution - o, over 600 turns Beam envelope evolution - o, over 600 turns
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Particle dynamics - Equilibration and diffusion

* Mixing on the scale of 1 turn
— 1=0.4israther large, so tune spread leads to fast mixing

» Diffusion varies with Ho Initial relaxation of #, with 0.01 tune depression in lota Lattice
— consistent at median values
— strong tails at large Ho

Spread in H, with 0.01 tune depression in lota Lattice
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Dependence of diffusion on Ho

H, distribution after 20 turns - 14 mA current in lota Lattice H, distribution for full population - Turn 25
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Conclusions

« Simulated IOTA lattice with segmented NL element
— Invariants appear well behaved over 1 million turns

* Higher order contributions of NL magnet at zero current
— Variation in the invariants scales with vo® and &3

* Large energy spread breaks integrability
— Dynamics are especially sensitive to sextupole fields
 |nitial simulations with space charge

— Tune depression appears to break integrability
* But there may be other nearby invariants
* Look for bounded behavior to retain nonlinear decoherence

— Operation at modest currents will likely require adjustments
to the magnets surrounding the integrable optics insert

/A\radiOSOff 20 /21



Future Work

Understand dynamics with space charge

— Investigate single particle dynamics with low nonlinearity
— Adjust lattice incrementally to recover integrability

— Calculate diffusion coefficient in perturbative regime
Implement chromaticity correction scheme

— Optically tfransparent sextuples to equate chromaticities
— Optimize dynamic aperture

Simulate wakefields in IOTA

— Quadrupolar term along vertical axis may limit peak
current

Simulate injection of matched beam

Consider machine perturbations
— misalignments and mismatches
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