

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

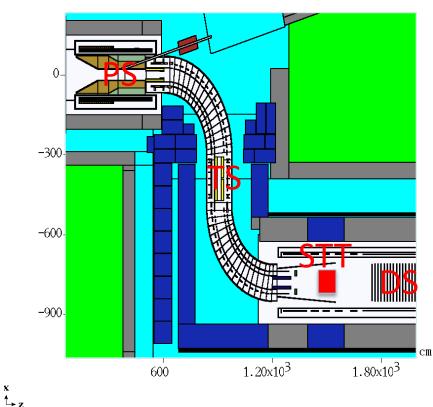
# Beam energy optimization for Mu2e @ PIP-II

Vitaly Pronskikh, Doug Glenzinski, Kyle Knopfel, Nikolai Mokhov, Robert Tschirhart

Fermi National Accelerator Laboratory

November 13, 2015

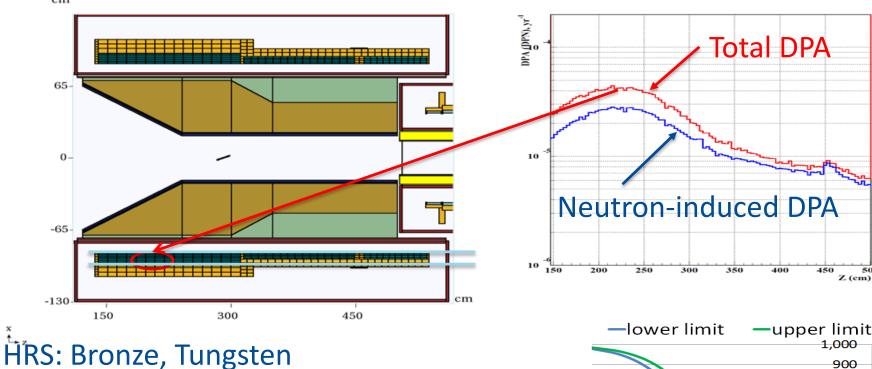
Particle Accelerator for Science and Innovation, Fermilab, Batavia


#### Introduction

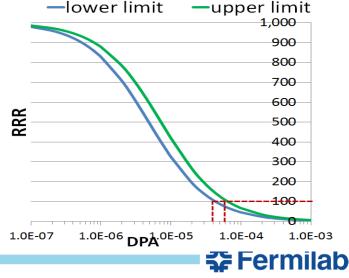
- An improved proton source will be required for a next generation Mu2e
- Necessary to understand:
  - Expected muon yield and muon stopping rates as a function of proton energy
  - Potential performance constraints as a function of proton beam energy
- MARS15 is used because the energy-deposition-related quantities are well modeled as well as DPA damage (displacement-per-atom)
- PIP-II : Mu2e upgrade potential (@800 MeV) > 100 kW (linac), 120 kW (@8 GeV) (Booster), energies within the range were also considered
- The energy range studied: 0.5 GeV 8 GeV.

🛠 Fermilab

#### Baseline Mu2e and MARS15 simulations

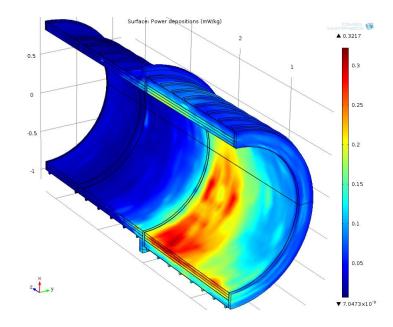

cm




DPA and power density vs beam energy vs HRS material Muon yield/stopping rate vs beam energy Figure of merit (stopping rate per DPA)

- 8 GeV 8 kW proton beam
- W target L=16 cm D=0.6 cm (beam σ=0.1 cm)
- Bronze HRS (tungsten considered for upgrade), CDR design is used for the study
  - PS, TS, DS (17-foil Al stopping target (STT))
- In MARS15 simulations: LAQGSM, thresholds: 1E-12 GeV for neutrons, 100 keV for charged h., muons, photons
   Fermilab

### DPA limit and model




DPA model: NRT (below 20 (150) MeV **ENDFB-VII/NJOY** based cross section library FermiDPA 1.0) is used. NbTi coils DPA limits incorporate KUR measured data 4-6E-5 DPA

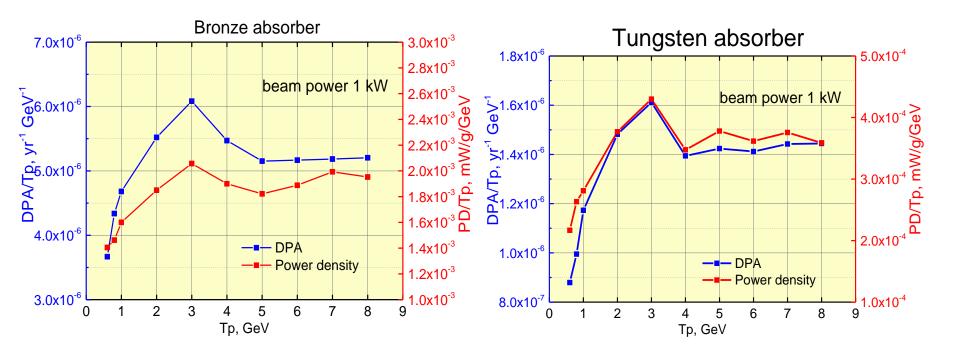


500

# Power density (PD) and other limits



Power density limit: -depends on the cooling scheme -involves many other assumptions Dynamic heat load limit: -scales with the number of cooling stations


Absorbed dose limit: usually high

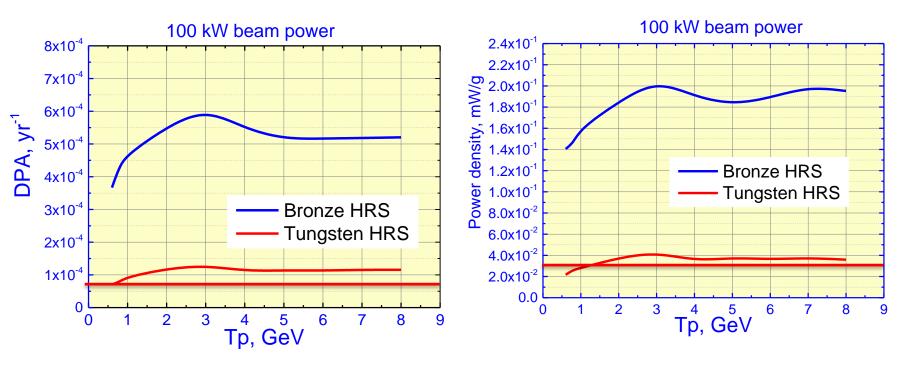
| Quantity | <b>DPA</b> , 10 <sup>-5</sup> | density, | Absorbed<br>dose,<br>MGy/yr | Dynamic<br>heat load,<br>W |
|----------|-------------------------------|----------|-----------------------------|----------------------------|
| Specs    | 4-6                           | 30       | 0.35                        | 100                        |
|          |                               |          |                             | 🛟 Fermila                  |

Vitaly Pronskikh | Beam energy optimization for Mu2e @ PIP-II

5

# DPA as a function of beam energy




DPA damage and peak power density are: Largest at ~3 GeV and drops with energy below that energy Larger for bronze than for tungsten by a factor of ~3-4

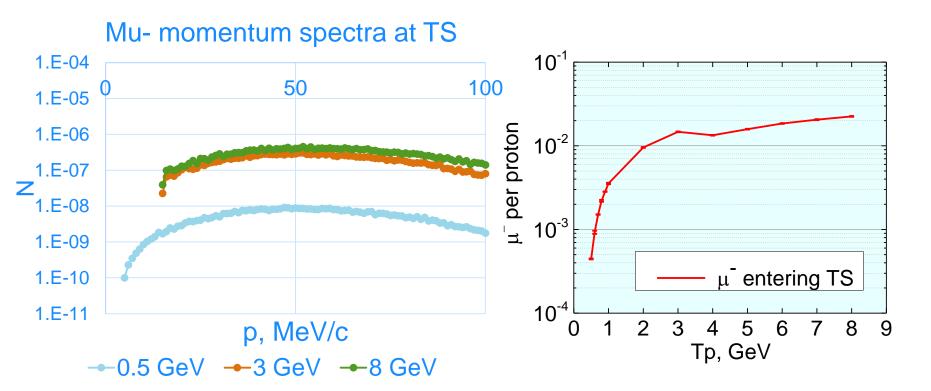
🛠 Fermilab

11/12/2015

6 Vitaly Pronskikh | Beam energy optimization for Mu2e @ PIP-II

# DPA and power density @ 100 kW




- DPA: Current coil design can likely tolerate 100 kW at proton energies < 1 GeV (if HRS thickness is increased).
- Power density: current coil design/cooling scheme can tolerate 100 kW at Ep = 0.8 GeV and lower. For higher energies another cooling scheme may be required.

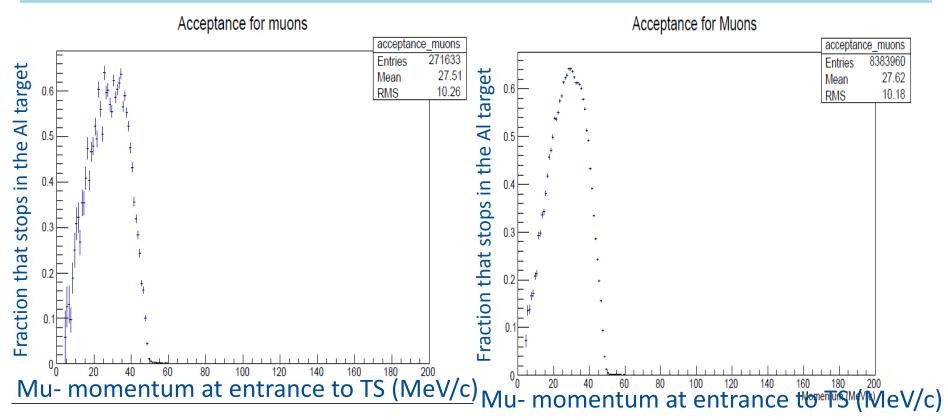
🚰 Fermilab

11/12/2015

• Above 1 GeV (DPA) or 2 GeV almost flat with energy.

### Mu-spectra and yields at TS




Constant beam intensity (not power) =  $6 \cdot 10^{12}$  p/s Steepest rise in  $\mu^-$  yields is between 0.5 and 2 GeV. Effective flux-based approach was used for counting muons

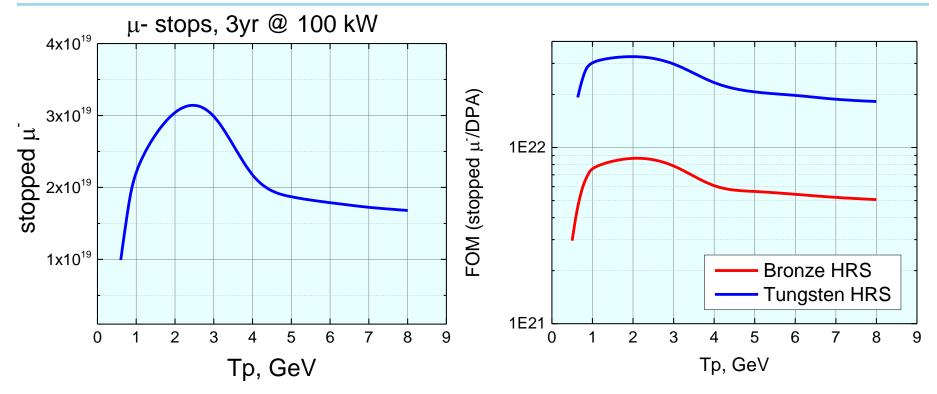
🚰 Fermilab

11/12/2015

8 Vitaly Pronskikh | Beam energy optimization for Mu2e @ PIP-II





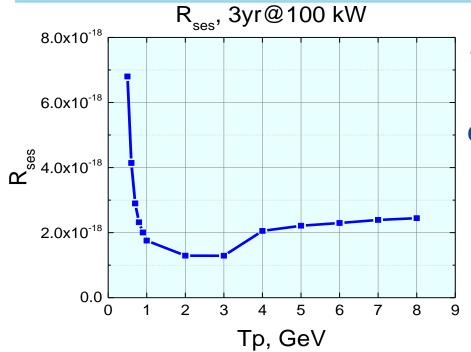

At 0.8 GeV Average 1-8 GeV Calculated using G4beamline, used with MARS15 calculated muon spectra at TS



11/12/2015

🛠 Fermilab

### Mu-stopping rates and Figure of Merit

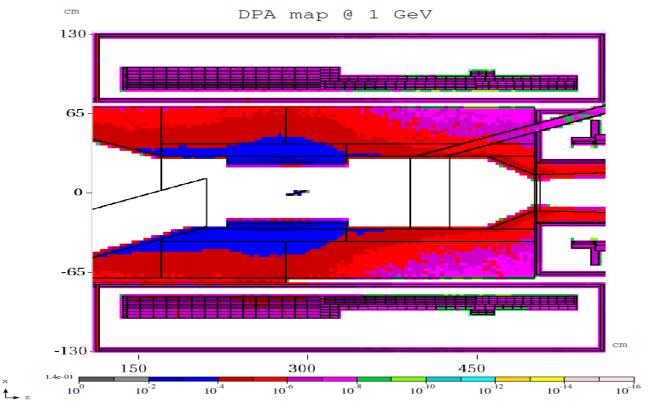



• 3 years = 4.7E21 protons on target @ 8 GeV (4.7E22 @ 0.8 GeV)

- If only stopped muons are considered: 2-3 GeV
- If DPA is also considered: 1-3 GeV
- The FOM for 0.8 GeV is about the same as it is for 8 GeV

🛠 Fermilab

#### Single-event sensitivity and limiting beam power




• The single-event-sensitivity (SES) corresponds to the rate of  $\mu$ -to-e conversion at which the experiment would observe 1 event Current Mu2e R<sub>ses</sub>=3.10<sup>-17</sup>

 Estimated SES as a function of proton beam energy

- Estimate is made assuming
  - 3y run at 100 kW (same timing structure, but increased duty factor)
  - Aluminum stopping target (ie. unchanged)
  - Total number of stopped muons as on page 10
  - Detectors can be made to handle increased rates so that acceptance and resolution comparable to current estimates
- Could achieve >x10 improvement for Tp in 0.8 5 GeV range
  Fermilab

# Future plans



#### Inner bore radius=20 cm No yield drop for R>17 cm

Investigate the DPA and Power density deposition for a tungsten HRS with a reduced inner bore

### Conclusions

- Energy dependence of DPA damage, power density, muon yield and muon stopping rate is studied.
- A Figure of Merit is proposed: the ratio of stopped muon rate to DPA
  - FOM is largest in the 1-3 GeV range
  - FOM for 0.8 GeV is comparable to 8 GeV
- Assuming detectors can be made to handle increased rates, can plausibly achieve x10 improvement in sensitivity for 100 kW at Tp = 0.8-5 GeV
- Additional work required to understand whether current coil + tungsten HRS design can likely tolerate 100 kW

🛟 Fermilab



#### **Spare slides**



14 Presenter | Presentation Title

#### **Mu- entering TS**

| Ep, GeV | Mu-/proton | Stat. uncertainty | Stat. uncertainty,<br>% |
|---------|------------|-------------------|-------------------------|
| 0.5     | 4.45E-04   | 5.17E-06          | 1.2                     |
| 0.6     | 9.26E-04   | 3.96E-05          | 4.3                     |
| 0.7     | 1.51E-03   | 9.53E-06          | 0.6                     |
| 0.8     | 2.20E-03   | 5.51E-05          | 2.5                     |
| 0.9     | 2.83E-03   | 1.31E-05          | 0.5                     |
| 1       | 3.55E-03   | 7.06E-05          | 2.0                     |
| 2       | 9.57E-03   | 1.16E-04          | 1.2                     |
| 3       | 1.47E-02   | 1.44E-04          | 1.0                     |
| 4       | 1.34E-02   | 1.38E-04          | 1.0                     |
| 5       | 1.58E-02   | 1.50E-04          | 0.9                     |
| 6       | 1.85E-02   | 1.93E-04          | 1.0                     |
| 7       | 2.06E-02   | 2.83E-04          | 1.4                     |
| 8       | 2.25E-02   | 2.51E-04          | 1.1                     |

11/11/2015

# Mu2e@PIP-II upgrade plans

| Performance Parameter                              | PIP                  | PIP-II               |      |            |
|----------------------------------------------------|----------------------|----------------------|------|------------|
| Linac Beam Energy                                  | 400                  | 800                  | MeV  | annonhdmar |
| Linac Beam Current                                 | 25                   | 2                    | mA   | 3          |
| Linac Beam Pulse Length                            | 0.03                 | 0.5                  | msec |            |
| Linac Pulse Repetition Rate                        | 15                   | 15                   | Hz   |            |
| Linac Beam Power to Booster                        | 4                    | 13                   | kW   |            |
| Linac Beam Power Capability (@>10%<br>Duty Factor) | 4                    | ~200                 | kW   | •          |
| Mu2e Upgrade Potential (800 MeV)                   | NA                   | >100                 | kW   | •          |
| Booster Protons per Pulse                          | 4.2×10 <sup>12</sup> | 6.4×10 <sup>12</sup> |      |            |
| Booster Pulse Repetition Rate                      | 15                   | 15                   | Hz   | •          |
| Booster Beam Power @ 8 GeV                         | 80                   | 120                  | kW   |            |
| Beam Power to 8 GeV Program (max)                  | 32                   | 40                   | kW   | •          |
| Main Injector Cycle Time @ 120 GeV                 | 1.33                 | 1.2                  | sec  |            |
| LBNF Beam Power @ 120 GeV*                         | 0.7                  | 1.2                  | MW   | •          |
| LBNF Upgrade Potential @ 60-120<br>GeV             | NA                   | >2                   | MW   |            |
|                                                    |                      |                      |      |            |

Table from S.Holmes, Neutrino Summit, 2014

16 Vitaly Pronskikh | Energy dependence of DPA damage in SC coils



- Early next decade
- 250 meter linac (20 Hz)?
- 800 MeV proton beam (2 mA)
- -> Booster -> 8 GeV (120 kW)
- -> Main

Injector/Recycler

->120 GeV (1.2 MW)

11/11/2015

