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Introduction

An improved proton source will be required for a next
generation Mu2e

Necessary to understand.:

— Expected muon yield and muon stopping rates as a function of
proton energy

— Potential performance constraints as a function of proton beam
energy

MARSI15 is used because the energy-deposition-related
guantities are well modeled as well as DPA damage
(displacement-per-atom)

PIP-II : Mu2e upgrade potential (@800 MeV) > 100 kW
(linac), 120 kW (@8 GeV) (Booster), energies within the
range were also considered

The energy range studied: 0.5 GeV — 8 GeV. . _
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Baseline Mu2e and MARS15 simulations
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DPA and power density vs beam energy
vs HRS material

Muon yield/stopping rate vs beam energy

Figure of merit (stopping rate per DPA)
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8 GeV 8 kW proton beam

W target L=16 cm D=0.6 cm
(beam 0=0.1 cm)

Bronze HRS (tungsten
considered for upgrade), CDR
design is used for the study

PS, TS, DS (17-foil Al stopping
target (STT))

In MARS15 simulations:
LAQGSM, thresholds: 1E-12
GeV for neutrons, 100 keV for

charged h., muons, photons
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DPA limit and model

DPA (PPN), yr!
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Power density (PD) and other limits

SSSSS %: Power depositions (mW/kg)

-depends on the cooling scheme
-involves many other assumptions
Dynamic heat load limit:

-scales with the number of cooling
Im stations

I Power density limit:

Absorbed dose limit: usually high

Specs 4-6 30 0.35 100

J€ :
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DPA as a function of beam energy

Bronze absorber
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DPA damage and peak power density are:
Largest at ~3 GeV and drops with energy below that energy
Larger for bronze than for tungsten by a factor of ~3-4
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DPA and power density @ 100 kW

DPA, yr*
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DPA: Current coil design can likely tolerate 100 kW at proton energies <
1 GeV (if HRS thickness is increased).

Power density: current coil design/cooling scheme can tolerate 100 kW at
Ep = 0.8 GeV and lower. For higher energies another cooling scheme
may be required.

Above 1 GeV (DPA) or 2 GeV almost flat with energy.
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Mu- spectra and yields at TS

Mu- momentum spectra at TS

1.E-04 107
1.£-05 0 20 100 :
- c 0 //—-
1.E-06 S 102!
L E.07 m 2 5
Z - _
1.E-08 o -
1.E-09 2 107 ]
1.E-10 —— u entering TS
1.E-11 10™

p, MeV/c 0123456789
0.5 GeV -3 GeV -8 GeV Tp, GeV
Constant beam intensity (not power) =6 - 102 p/s

Steepest rise in u” yields is between 0.5 and 2 GeV.
Effective flux-based approach was used for counting muons
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Acceptance

Fraction that stops in the Al target

Mu- momentum at entrance to TS (MeV/c)Muo_ momentum at entrance tFS(MeV/c)

Acceptance for muons
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Entries 8383960
Mean 2162
RMS 10.18

Average 1-8 GeV
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Mu- stopping rates and Figure of Merit

. h-stops, 3yr @ 100 kW
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3 years = 4.7E21 protons on target @ 8 GeV (4.7E22 @ 0.8 GeV)
If only stopped muons are considered: 2-3 GeV
If DPA Is also considered: 1-3 GeV

The FOM for 0.8 GeV Is about the same as it Is for 8 GeV
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Single-event sensitivity and limiting beam power
R, 3yr@100 kW
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e Estimate is made assuming
- 3y run at 100 kW (same timing structure, but increased duty factor)
- Aluminum stopping target (ie. unchanged)
- Total number of stopped muons as on page 10
- Detectors can be made to handle increased rates so that acceptance and
resolution comparable to current estimates

* Could achieve >x10 improvement for Tp in 0.8 =5 GeV ra_.n_%: b
ermila
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Future plans

" DPA map @ 1 GeW

Inner bore radius=20 cm
No yield drop for R>17 cm

Investigate the DPA and Power density deposition for a tungsten

HRS with a reduced inner bore

JE :
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Conclusions

* Energy dependence of DPA damage, power density, muon
yield and muon stopping rate is studied.

« AFigure of Merit is proposed: the ratio of stopped muon rate
to DPA

— FOM is largest in the 1-3 GeV range
— FOM for 0.8 GeV is comparable to 8 GeV

« Assuming detectors can be made to handle increased rates,
can plausibly achieve x10 improvement in sensitivity for 100
KW at Tp = 0.8-5 GeV

« Additional work required to understand whether current coll +
tungsten HRS design can likely tolerate 100 kW
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Mu- entering TS
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Mu2e@PIP-IT upgrade plans

Performance Parameter PIP PIP-II
Linac Beam Energy 400 800 MeV
Linac Beam Current 25 2 mA
Linac Beam Pulse Length 0.03 0.5 msec
Linac Pulse Repetition Rate 15 15 Hz
Linac Beam Power to Booster 4 13 kW

, — 5
I[_)llnjfycllz?,aecicr)nr)Power Capability (@>10% 4 ~200 KW
Mu2e Upgrade Potential (800 MeV) NA >100 | kW
Booster Protons per Pulse 4.2x1012 6.4x10%2
Booster Pulse Repetition Rate 15 15 Hz
Booster Beam Power @ 8 GeV 80 120 kW
Beam Power to 8 GeV Program (max) 32 40 kW
Main Injector Cycle Time @ 120 GeV 1.33 1.2 sec
LBNF Beam Power @ 120 GeV* 0.7 1.2 MW
LBNF Upgrade Potential @ 60-120 NA 59 MW

GeV

Table from S.Holmes, Neutrino Summit, 2014
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Early next decade

250 meter linac (20
Hz)?

800 MeV proton beam
(2 mA)

-> Booster -> 8 GeV
(120 kW)

-> Main
Injector/Recycler

->120 GeV (1.2 MW)
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