

Metaheuristic algorithms in nuSTORM and MICE

Ao Liu Fermilab

Outline

- Introduction to metaheuristic algorithms
 - Genetic algorithm
 - Simulated Annealing
 - Implementing MPI in the above algorithms
- Optimization studies in nuSTORM and MICE
 - Motivation
 - Optimization objectives and setup
 - Results
- Summary

- A heuristic search finds solutions for a problem by trials and errors.
 - Unlike deterministic algorithms such as golden section search, Gauss-Newton algorithm, greedy algorithm, etc;
 - It is nondeterministic, i.e. solutions are proposed by guesses;
 - Pros: efficient, free and thorough;
 - Cons: inaccurate, can not guarantee to find the absolute optimum
- A metaheuristic algorithm is a strategy that guides a heuristic search
 - It is more advanced: a good guide to new trials results in faster and more thorough search in the parameter space, so that the absolute global optimum can be visited.

Properties of metaheuristic algorithms

If I had six hours to chop down a tree,

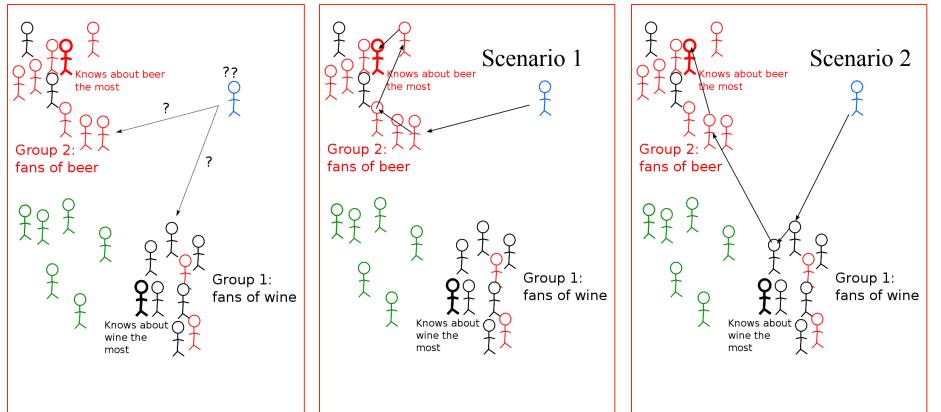
sharpening the axe.

~ Abraham Lincoln

- Not problem-specific - Generally can be easily adapted I'd spend the first four hours to any optimization problem
- Have mechanisms to avoid getting trapped in local optimum areas
- The more complicated a system is, the more advantageous it is to use metaheuristic algorithms
- There are many applications in accelerator physics
 - Cavity design, magnetic horn design, lattice design, target design optimizations
 - Commissioning and operation

A real life example of metaheuristic algorithms

- Suppose you are at a workshop reception where people taste different drinks
 - You want to find the person who knows about beers the most.
 Choose the next person you talk to by his/her neighbors



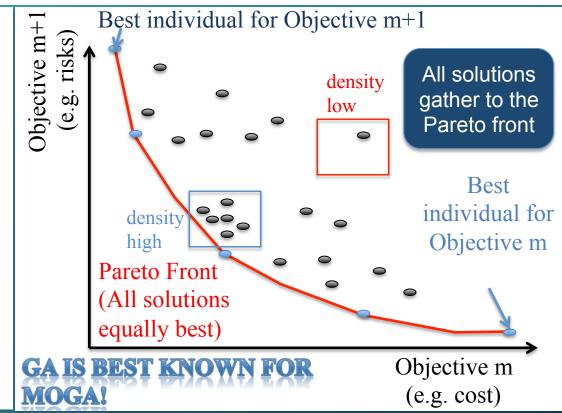
- A genetic algorithm (or GA) is a metaheuristic algorithm;
- Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination).

- Starts with a population of randomly generated individuals;
 - A "known to be good" individual can be put in the population as a seed;
 - One individual is a set of variable values $(\mathbf{x}_i = (x_{0i}, x_{1i}, x_{2i}, ...,))$
- In each *generation*, the *fitness* of every individual in the population is evaluated, a part of the individuals are selected, and modified by *crossover* to form a new population.
 - Crossover is a calculator that generates new values (usually two) based on two old values: can be binary or real value;
 - Mutation is often added: to randomly explore parameter space with a probability;
 - Generally, two parents produce two children, in some versions, elite parents have more children

How GA works (cont'd)

- The new population is mixed with the old population
 - Individuals who do not generate children from the old population are abandoned;
 - The mix forms a new generation
- Usually, the algorithm terminates when either a maximum number of generations has been produced, or the fitness level has stopped increasing for the population.
 - There are ways to avoid premature termination, like a judgment day, or shuffle all parents
- There are lot of advanced improvements to the algorithm! It is still an area that is actively studied.

- Introduces pareto front and dominance
 - Multiple objectives: McGrady is faster but shorter, Yao is taller but slower. They can not dominate each other so they are equally good
- In the decision space, any two of the objectives form a pareto front that can be visualized as in the right plot
- Introduces crowding
 distance, which measures
 the population density in
 the decision space
 - Can be used to choose parents



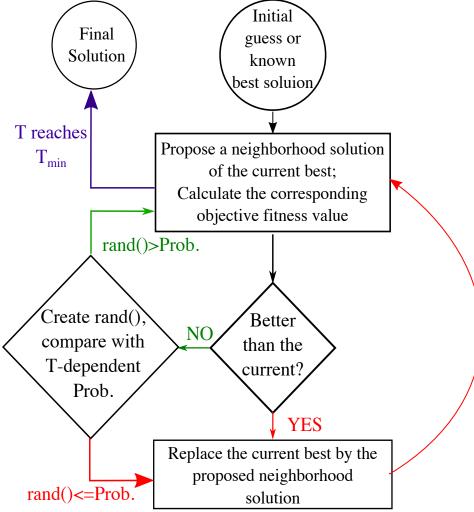
- Supports both MOGA and single objective GA (SOGA)
- Written in Python, with MPI implemented
 - Computes in parallel and gathers information together;
 - Implemented at NERSC, a national scientific computing center at LBNL;
 - Certainly any platform with scientific Python and MPI;
- Connects with other programs GA provides solutions, other programs provide results
- Has the mechanisms mentioned above to deliver high performance optimization

- MOGA is powerful but SOGA is usually not very CPU efficient, especially at the converging stage;
- SA is a metaheuristic algorithm that can be based on both *trajectory* information and *population* information
 - Random walk + iterative improvement
 - New solution can replace the old solution when
 - New solution is better;
 - New solution is worse, with a probability of $p(T,s',s) = \exp\left(\frac{f(\vec{x}_{new}) - f(\vec{x}_{old})}{T}\right)$
 - T is the *temperature*, which reduces in each iteration;
 - When T is very low, the solution "freezes".

More about SA

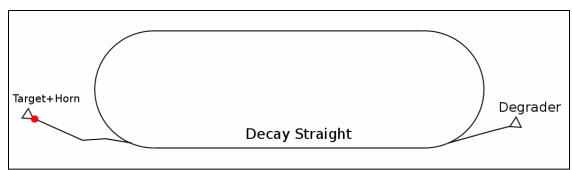
• Pros:

- Integrates local searches, and stochastic searches;
- Fast, easy to converge
- Cons:
 - No memory: once new solution replaces the old one, the previous result (possibly better result) will be lost;
 - Relies on the temperature: the probability function works only if the fitness function and temperature are chosen wisely
 - e.g. fitness value ~= 1, but temperature ~= 1000, it never works;
 - Requires some knowledge of the system



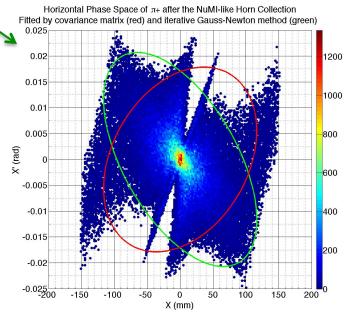
- Use MPI controlled population to build memory about the global optimum
 - Use a rank (one MPI worker) to focus on performing local searches around the global optimum, never shifts to a worse solution;
 - Other ranks perform individual searches with their own path;
 - In each generation, the information from each rank is gathered and the global optimum is updated
- Python as the GA code, platform independent

- neutrinos from STORed Muons (nuSTORM)
 - The simplest realization of a neutrino factory: provide a clean and precisely known v_e source from muon decay in a storage ring



 Need to re-optimize the magnetic horn to focus the pions into a beamline acceptance, rather than conventionally point-to-parallel;

- Use MOGA to optimize the yield of muons in both:
 - Momentum acceptance of the beamline;
 - Includes the pion momentum acceptance and pion decay kinematics
 - Phase space acceptance of the beamline
 - Gauss-Newton phase space ellipse fitting used to guide the optics design
- Due to the nonlinear effects, the acceptance of the whole beamline can not be represented by a simple mathematical expression of the two.
- MOGA can optimize them simultaneously



Track π + in the

horns.

calculate

fitness values

for each

individual

Optimization work flow

Model the B-

field in the

horns, based

on the

parameters of

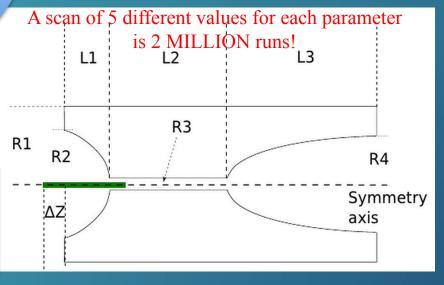
each horn

9 parameters(8 listed below+ horn current)

2 objectives

Make selection and the next population. A new generation is formed

When the maximum generation number is reached, or the fitness stops improving, stop the algorithm



GA starts, a number

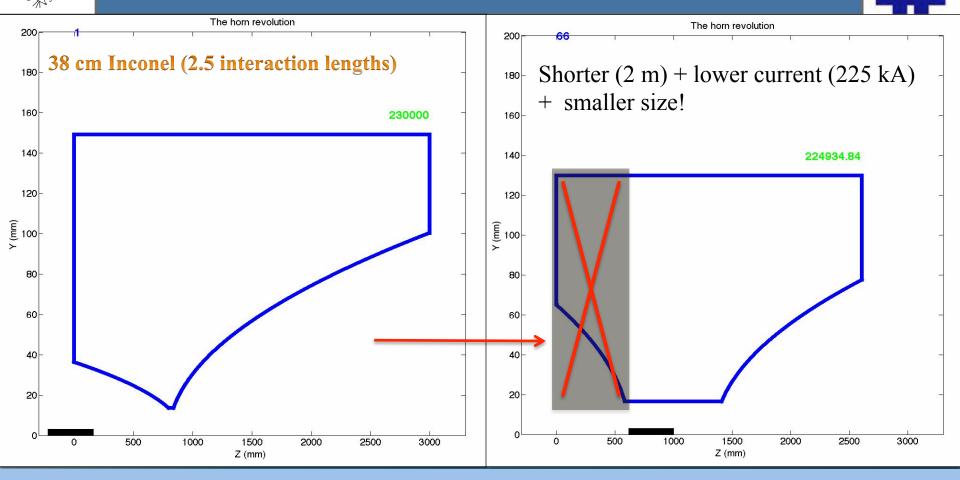
of random individual

horns produced as

the first generation

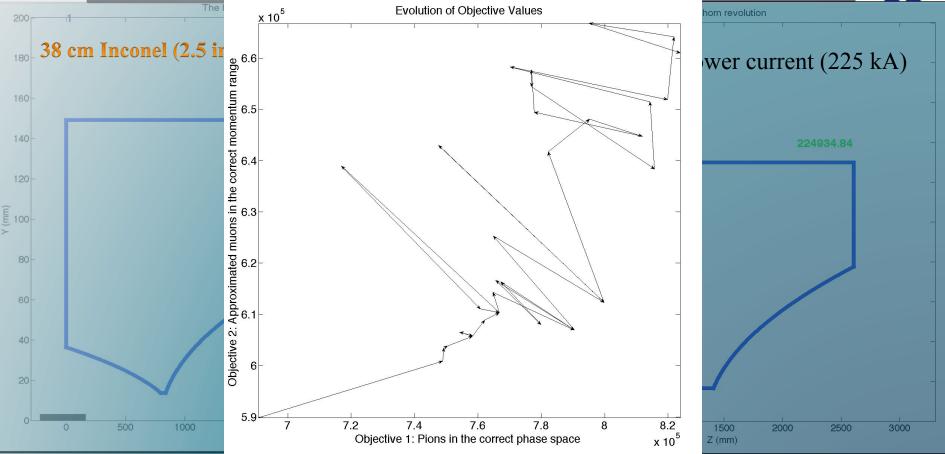
Constraints added: Maximum horn current, minimum neck radius, Feasible Twiss range

nuSTORM Horn Optimization – Results



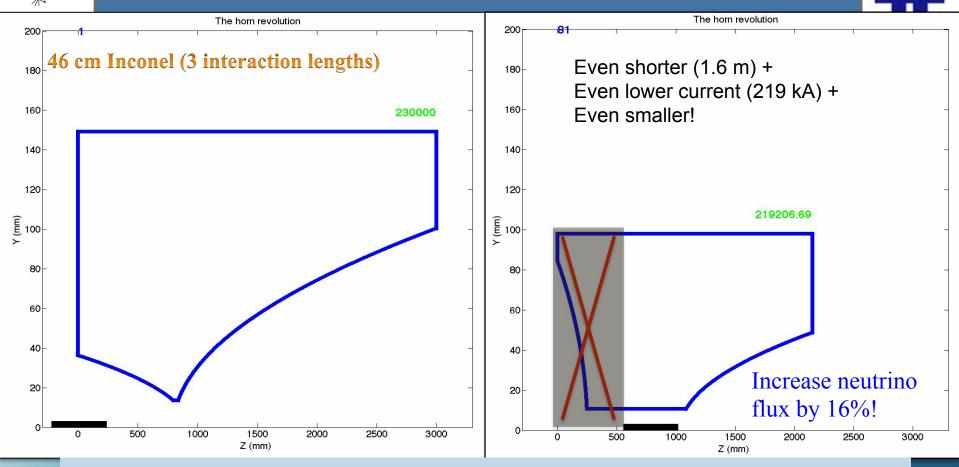
Changing the horn design without extending the target results in increasing μ + in both 2000 μ m and 3.8±10% GeV/c by 8.3%

Horn Optimization – Results



Changing the horn design without extending the target results in increasing μ + in both 2000 μ m and 3.8±10% GeV/c by 8.3%

Horn Optimization – Results (Cont'd)

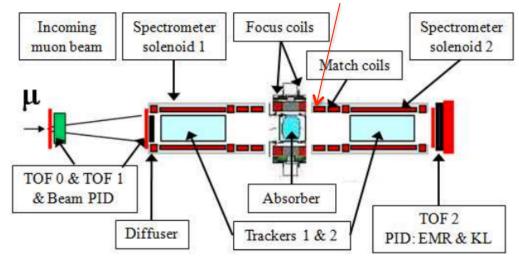


 μ + in both 2000 μ m and 3.8±10% GeV/c increased by ~ 16% (Compared to the preoptimization 38 cm Inconel + baseline horn) (If just changing the target length: ~ 5%)

- Muon Ionization Cooling Experiment (MICE @ RAL)
 Step IV:
 - Measurement of the cooling equation

 $\frac{d\epsilon_n}{dz} = \frac{-\epsilon_n}{\beta^2 E} \left\langle \frac{dE}{dz} \right\rangle + \frac{\beta_\perp (14 \; {\rm MeV})^2}{2\beta^3 E m_\mu X_0}$

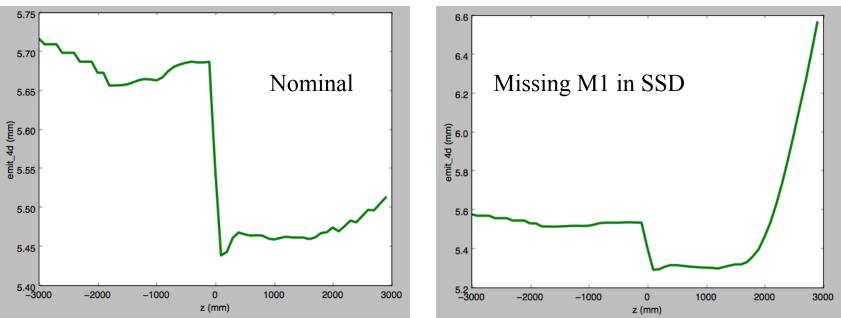
- Measurement of the multiple scattering in the absorber materials
- Incident:
 - Lost one of the matching coils in SSD
- Action:
 - Re-optimize the lattice to obtain cooling and good transmission



Unavailable now

Optimization cases in MICE (Cont'd)

 Mismatch from missing the coil causes emittance growth and higher loss:



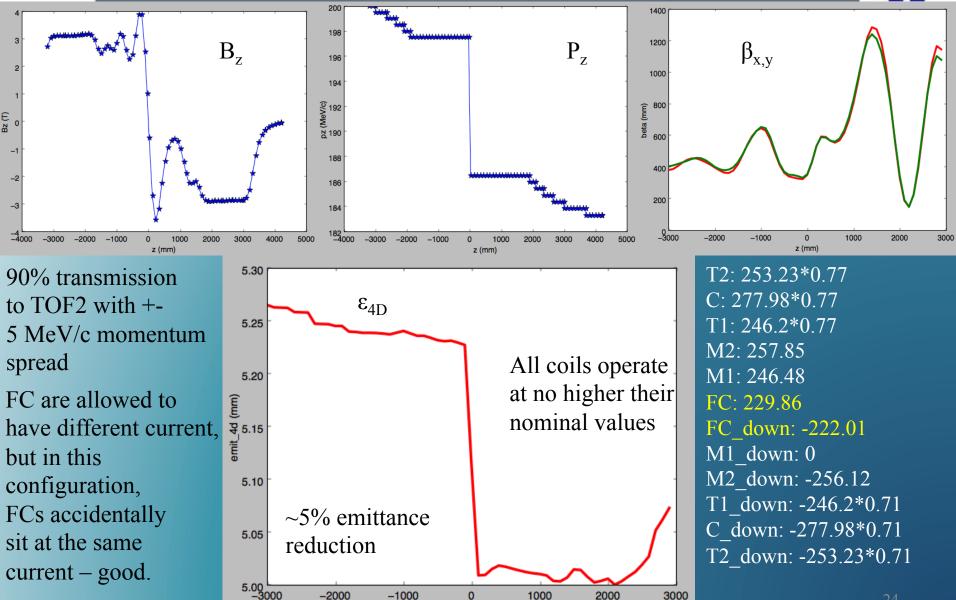
6 mm initial normalized 4D emittance, 200±10 MeV/c, survived muons only

 Use metaheuristic algorithms to ensure demonstration of cooling is possible without M1 in SSD

- Optimization is based on particle tracking
 - Performed in G4Beamline (author: T. Roberts, Muons Inc.)
 - SA and GA are both used.
- MICE coils and currents both SS and FC
- Model materials in channel to match MAUS as accurately as possible:
- Use initial beam generated by constant solenoid mode Penn beam matrix, which matches the B_z at the starting point.
 - Beam starts at z=-3000 mm from the absorber (tracker0).

- Track reconstruction in the trackers requires uniform B_z on axis, which is used as a constraint in the optimization;
- Objective function:
 - $T^{2} * (\epsilon_{4D_tracker1} \epsilon_{4D_tracker0}) / \epsilon_{4D_tracker0}$
 - T: transmission to TOF2 (trigger): guarantees good transmission
 - $-\epsilon_{4D_tracker0(1)}$ defined at -+1800 mm from the absorber (tracker ref. planes, i.e. where emittance is measured)
- Initial beam has 2.5% momentum spread to model a more realistic transmission

Optimization result



z (mm)

- Metaheuristic algorithms are extremely useful for design/operation optimizations with lots of variables or complicated performance mechanism;
- Using a MOGA, a nuSTORM target + horn combo can be optimized to deliver 16% more useful muons to the decay ring;
- Using a SOGA/SA, decent cooling with good transmission can be obtained even without the unavailable downstream matching coil in MICE;
- The algorithms can be easily applied to your project: whenever you need to make a decision!

Q&A

QUESTIONS? YES OR NO, THANKS!