
Metaheuristic algorithms in
nuSTORM and MICE

Ao Liu
Fermilab

1

Outline

•  Introduction to metaheuristic algorithms
– Genetic algorithm
– Simulated Annealing
–  Implementing MPI in the above algorithms

•  Optimization studies in nuSTORM and MICE
– Motivation
– Optimization objectives and setup
– Results

•  Summary

2

What is a metaheuristic algorithm

•  A heuristic search finds solutions for a problem by trials
and errors.
–  Unlike deterministic algorithms such as golden section search,

Gauss-Newton algorithm, greedy algorithm, etc;
–  It is nondeterministic, i.e. solutions are proposed by guesses;
–  Pros: efficient, free and thorough;
–  Cons: inaccurate, can not guarantee to find the absolute optimum

•  A metaheuristic algorithm is a strategy that guides a
heuristic search
–  It is more advanced: a good guide to new trials results in faster

and more thorough search in the parameter space, so that the
absolute global optimum can be visited.

3

Properties of metaheuristic algorithms

•  Not problem-specific
– Generally can be easily adapted
 to any optimization problem

•  Have mechanisms to avoid
 getting trapped in local optimum areas
•  The more complicated a system is, the more

advantageous it is to use metaheuristic algorithms
•  There are many applications in accelerator physics

– Cavity design, magnetic horn design, lattice design,
target design optimizations

– Commissioning and operation

4

A real life example of metaheuristic
algorithms

•  Suppose you are at a workshop reception where people taste
different drinks
–  You want to find the person who knows about beers the most.

Choose the next person you talk to by his/her neighbors

5

Scenario 1 Scenario 2

What is a genetic algorithm
•  A genetic algorithm (or GA) is a metaheuristic algorithm;
•  Genetic algorithms are a particular class of evolutionary

algorithms that use techniques inspired by evolutionary biology
such as inheritance, mutation, selection, and crossover (also
called recombination).

6

Big but friendly Aggressive but small

Survives well, but not always. What if
their genes crossover?

Many

generations

Tibetan mastiff

How GA works
•  Starts with a population of randomly generated individuals;

•  A “known to be good” individual can be put in the population as a
seed;

•  One individual is a set of variable values (xi=(x0i, x1i, x2i ,…,))
•  In each generation, the fitness of every individual in the

population is evaluated, a part of the individuals are
selected, and modified by crossover to form a new
population.
•  Crossover is a calculator that generates new values (usually two)

based on two old values: can be binary or real value;
•  Mutation is often added: to randomly explore parameter space

with a probability;
•  Generally, two parents produce two children, in some versions,

elite parents have more children

7

How GA works (cont’d)
•  The new population is mixed with the old

population
-  Individuals who do not generate children from the old

population are abandoned;
- The mix forms a new generation

•  Usually, the algorithm terminates when either a
maximum number of generations has been
produced, or the fitness level has stopped
increasing for the population.
- There are ways to avoid premature termination, like a

judgment day, or shuffle all parents
•  There are lot of advanced improvements to the

algorithm! It is still an area that is actively studied.

8

Multi-objective GA (MOGA)

O
bj

ec
tiv

e
m

+1

(e
.g

. r
is

ks
)

Objective m
(e.g. cost)

Pareto Front
(All solutions
equally best)

Best individual for Objective m+1

Best
individual for
Objective m

All solutions
gather to the
Pareto front

•  Introduces pareto front and dominance
–  Multiple objectives: McGrady is faster but shorter, Yao is taller but

slower. They can not dominate each other so they are equally
good

•  In the decision space, any
two of the objectives form
a pareto front that can be
visualized as in the right
plot

•  Introduces crowding
distance, which measures
the population density in
the decision space

•  Can be used to
choose parents

density
high

density
low

Ao Liu 9

My GA code

•  Supports both MOGA and single objective GA
(SOGA)

•  Written in Python, with MPI implemented
– Computes in parallel and gathers information together;
–  Implemented at NERSC, a national scientific computing

center at LBNL;
– Certainly any platform with scientific Python and MPI;

•  Connects with other programs – GA provides
solutions, other programs provide results

•  Has the mechanisms mentioned above to deliver
high performance optimization

10

What is a Simulated Annealing (SA)

•  MOGA is powerful but SOGA is usually not very
CPU efficient, especially at the converging stage;

•  SA is a metaheuristic algorithm that can be based
on both trajectory information and population
information
– Random walk + iterative improvement
– New solution can replace the old solution when

•  New solution is better;
•  New solution is worse,
 with a probability of

– T is the temperature, which reduces in each iteration;
•  When T is very low, the solution “freezes”.

11

p(T, s ', s) = exp f (!xnew)− f (
!xold)

T
"

#
$

%

&
'

More about SA
•  Pros:

–  Integrates local searches, and
stochastic searches;

–  Fast, easy to converge
•  Cons:

–  No memory: once new solution
replaces the old one, the
previous result (possibly better
result) will be lost;

–  Relies on the temperature: the
probability function works only
if the fitness function and
temperature are chosen wisely

•  e.g. fitness value ~= 1, but
temperature ~= 1000, it never
works;

•  Requires some knowledge of the
system

12

Propose a neighborhood solution
of the current best;

Calculate the corresponding
objective fitness value

Better
than the
current?

Initial
guess or
known

best soluion

Replace the current best by the
proposed neighborhood

solution

NO

YES

Final
Solution

Create rand(),
compare with
T-dependent

Prob.

rand()<=Prob.

rand()>Prob.

T reaches
Tmin

My SA code

•  Use MPI controlled population to build memory
about the global optimum
– Use a rank (one MPI worker) to focus on performing

local searches around the global optimum, never
shifts to a worse solution;

– Other ranks perform individual searches with their
own path;

–  In each generation, the information from each rank
is gathered and the global optimum is updated

•  Python as the GA code, platform independent

13

Optimization cases in nuSTORM

•  neutrinos from STORed Muons (nuSTORM)
– The simplest realization of a neutrino factory:

provide a clean and precisely known νe source from
muon decay in a storage ring

– Need to re-optimize the magnetic horn to focus the
pions into a beamline acceptance, rather than
conventionally point-to-parallel;

14

Optimization of a nuSTORM horn
•  Use MOGA to optimize the yield of muons in both:

–  Momentum acceptance of the beamline;
•  Includes the pion momentum acceptance and pion decay kinematics

–  Phase space acceptance of the beamline
•  Gauss-Newton phase space ellipse fitting used to guide the optics

design
•  Due to the nonlinear effects, the
 acceptance of the whole beamline
 can not be represented by a
 simple mathematical expression of
 the two.
•  MOGA can optimize them
 simultaneously

15

Optimization work flow

16

A scan of 5 different values for each parameter
is 2 MILLION runs!

9 parameters
(8 listed below
+ horn current)

2 objectives

Constraints
added:
Maximum
horn current,
minimum neck
radius,
Feasible Twiss
range

Model the B-
field in the

horns, based
on the

parameters of
each horn

Make selection
and the next
population. A

new generation
is formed

Track π+ in the
horns,

calculate
fitness values

for each
individual

When the maximum generation
number is reached, or the fitness

stops improving,stop the algorithm

GA starts, a number
of random individual
horns produced as
the first generation

nuSTORM Horn Optimization – Results

17

Shorter (2 m) + lower current (225 kA)
+ smaller size!

Changing the horn design without extending the target results in
increasing µ+ in both 2000 µm and 3.8±10% GeV/c by 8.3%

Horn Optimization – Results

18

Shorter (2 m) + lower current (225 kA)
+ smaller size!

Changing the horn design without extending the target results in
increasing µ+ in both 2000 µm and 3.8±10% GeV/c by 8.3%

Horn Optimization – Results (Cont’d)

19

µ+ in both 2000 µm and 3.8±10% GeV/c increased by ~ 16% (Compared to the pre-
optimization 38 cm Inconel + baseline horn)

(If just changing the target length: ~ 5%)

Even shorter (1.6 m) +
Even lower current (219 kA) +
Even smaller!

Increase neutrino
flux by 16%!

Optimization cases in MICE
•  Muon Ionization Cooling Experiment (MICE @ RAL)

–  Step IV:
•  Measurement of the cooling equation

•  Measurement of the multiple scattering in the absorber materials
–  Incident:

•  Lost one of the matching
 coils in SSD

–  Action:
•  Re-optimize the lattice to
 obtain cooling and good
 transmission

20

Unavailable now

Optimization cases in MICE (Cont’d)
•  Mismatch from missing the coil causes emittance growth

and higher loss:

•  Use metaheuristic algorithms to ensure demonstration of
cooling is possible without M1 in SSD

21

6 mm initial normalized 4D emittance, 200±10 MeV/c, survived muons only

Nominal Missing M1 in SSD

Optimization setup – G4Beamline

•  Optimization is based on particle tracking
–  Performed in G4Beamline (author: T. Roberts, Muons Inc.)
–  SA and GA are both used.

•  MICE coils and currents – both SS and FC
•  Model materials in channel to match MAUS as accurately as

possible:
•  Use initial beam generated by constant solenoid mode Penn

beam matrix, which matches the Bz at the starting point.
–  Beam starts at z=-3000 mm from the absorber (tracker0).

Modified from P. Snopok’s G4BL input

22

Optimization details

•  Track reconstruction in the trackers requires
uniform Bz on axis, which is used as a constraint in
the optimization;

•  Objective function:
– T2 * (ε4D_tracker1-ε4D_tracker0)/ε4D_tracker0

•  T: transmission to TOF2 (trigger): guarantees good
transmission

–  ε4D_tracker0(1) defined at -+1800 mm from the absorber
(tracker ref. planes, i.e. where emittance is measured)

•  Initial beam has 2.5% momentum spread to model
a more realistic transmission

23

Optimization result

24

Bz Pz βx,y

ε4D
T2: 253.23*0.77
C: 277.98*0.77
T1: 246.2*0.77
M2: 257.85
M1: 246.48
FC: 229.86
FC_down: -222.01
M1_down: 0
M2_down: -256.12
T1_down: -246.2*0.71
C_down: -277.98*0.71
T2_down: -253.23*0.71

90% transmission
to TOF2 with +-
5 MeV/c momentum
spread
FC are allowed to
have different current,
but in this
configuration,
FCs accidentally
sit at the same
current – good.

~5% emittance
reduction

All coils operate
at no higher their
nominal values

Conclusions

•  Metaheuristic algorithms are extremely useful for
design/operation optimizations with lots of
variables or complicated performance mechanism;

•  Using a MOGA, a nuSTORM target + horn combo
can be optimized to deliver 16% more useful
muons to the decay ring;

•  Using a SOGA/SA, decent cooling with good
transmission can be obtained even without the
unavailable downstream matching coil in MICE;

•  The algorithms can be easily applied to your
project: whenever you need to make a decision!

25

QUESTIONS? YES OR NO, THANKS!

Q & A

26

