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What is a metaheuristic algorithm 

•  A heuristic search finds solutions for a problem by trials 
and errors.  
–  Unlike deterministic algorithms such as golden section search, 

Gauss-Newton algorithm, greedy algorithm, etc; 
–  It is nondeterministic, i.e. solutions are proposed by guesses; 
–  Pros: efficient, free and thorough; 
–  Cons: inaccurate, can not guarantee to find the absolute optimum 

•  A metaheuristic algorithm is a strategy that guides a 
heuristic search 
–  It is more advanced: a good guide to new trials results in faster 

and more thorough search in the parameter space, so that the 
absolute global optimum can be visited. 
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Properties of metaheuristic algorithms 

•  Not problem-specific 
– Generally can be easily adapted 
   to any optimization problem 

•  Have mechanisms to avoid  
    getting trapped in local optimum areas 
•  The more complicated a system is, the more 

advantageous it is to use metaheuristic algorithms 
•  There are many applications in accelerator physics 

– Cavity design, magnetic horn design, lattice design, 
target design optimizations 

– Commissioning and operation 
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A real life example of metaheuristic 
algorithms 

•  Suppose you are at a workshop reception where people taste 
different drinks 
–  You want to find the person who knows about beers the most. 

Choose the next person you talk to by his/her neighbors 
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What is a genetic algorithm 
•  A genetic algorithm (or GA) is a metaheuristic algorithm; 
•  Genetic algorithms are a particular class of evolutionary 

algorithms that use techniques inspired by evolutionary biology 
such as inheritance, mutation, selection, and crossover (also 
called recombination). 
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How GA works 
•  Starts with a population of randomly generated individuals; 

•  A “known to be good” individual can be put in the population as a 
seed; 

•  One individual is a set of variable values (xi=(x0i, x1i, x2i ,…,)) 
•  In each generation, the fitness of every individual in the 

population is evaluated, a part of the individuals are 
selected, and modified by crossover to form a new 
population. 
•  Crossover is a calculator that generates new values (usually two) 

based on two old values: can be binary or real value; 
•  Mutation is often added: to randomly explore parameter space 

with a probability; 
•  Generally, two parents produce two children, in some versions, 

elite parents have more children 
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How GA works (cont’d) 
•  The new population is mixed with the old 

population 
-  Individuals who do not generate children from the old 

population are abandoned; 
- The mix forms a new generation 

•  Usually, the algorithm terminates when either a 
maximum number of generations has been 
produced, or the fitness level has stopped 
increasing for the population. 
- There are ways to avoid premature termination, like a 

judgment day, or shuffle all parents 
•  There are lot of advanced improvements to the 

algorithm! It is still an area that is actively studied. 
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Multi-objective GA (MOGA) 
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•  Introduces pareto front and dominance 
–  Multiple objectives: McGrady is faster but shorter, Yao is taller but 

slower. They can not dominate each other so they are equally 
good 

•  In the decision space, any 
two of the objectives form 
a pareto front that can be 
visualized as in the right 
plot 

•  Introduces crowding 
distance, which measures 
the population density in 
the decision space 

•  Can be used to 
choose parents 
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high 

density  
low 
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My GA code 

•  Supports both MOGA and single objective GA 
(SOGA) 

•  Written in Python, with MPI implemented 
– Computes in parallel and gathers information together; 
–  Implemented at NERSC, a national scientific computing 

center at LBNL; 
– Certainly any platform with scientific Python and MPI; 

•  Connects with other programs – GA provides 
solutions, other programs provide results 

•  Has the mechanisms mentioned above to deliver 
high performance optimization 
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What is a Simulated Annealing (SA) 

•  MOGA is powerful but SOGA is usually not very 
CPU efficient, especially at the converging stage; 

•  SA is a metaheuristic algorithm that can be based 
on both trajectory information and population 
information 
– Random walk + iterative improvement 
– New solution can replace the old solution when 

•  New solution is better; 
•  New solution is worse,  
   with a probability of  

– T is the temperature, which reduces in each iteration; 
•  When T is very low, the solution “freezes”. 
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More about SA 
•  Pros: 

–  Integrates local searches, and 
stochastic searches; 

–  Fast, easy to converge 
•  Cons: 

–  No memory: once new solution 
replaces the old one, the 
previous result (possibly better 
result) will be lost; 

–  Relies on the temperature: the 
probability function works only 
if the fitness function and 
temperature are chosen wisely 

•  e.g. fitness value ~= 1, but 
temperature ~= 1000, it never 
works; 

•  Requires some knowledge of the 
system 
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My SA code 

•  Use MPI controlled population to build memory 
about the global optimum 
– Use a rank (one MPI worker) to focus on performing 

local searches around the global optimum, never 
shifts to a worse solution; 

– Other ranks perform individual searches with their 
own path; 

–  In each generation, the information from each rank 
is gathered and the global optimum is updated 

•  Python as the GA code, platform independent 
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Optimization cases in nuSTORM 

•  neutrinos from STORed Muons (nuSTORM) 
– The simplest realization of a neutrino factory: 

provide a clean and precisely known νe source from 
muon decay in a storage ring 

– Need to re-optimize the magnetic horn to focus the 
pions into a beamline acceptance, rather than 
conventionally point-to-parallel; 
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Optimization of a nuSTORM horn 
•  Use MOGA to optimize the yield of muons in both: 

–  Momentum acceptance of the beamline; 
•  Includes the pion momentum acceptance and pion decay kinematics 

–  Phase space acceptance of the beamline 
•  Gauss-Newton phase space ellipse fitting used to guide the optics 

design 
•  Due to the nonlinear effects, the  
   acceptance of the whole beamline 
   can not be represented by a  
   simple mathematical expression of 
   the two. 
•  MOGA can optimize them  
   simultaneously 
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Optimization work flow 
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A scan of 5 different values for each parameter 
is 2 MILLION runs! 

9 parameters 
(8 listed below 
+ horn current) 

2 objectives 

Constraints 
added:  
Maximum 
horn current, 
minimum neck 
radius, 
Feasible Twiss 
range 

Model the B-
field in the 

horns, based 
on the 

parameters of 
each horn 

Make selection 
and the next 
population. A 

new generation 
is formed 

Track π+ in the 
horns, 

calculate 
fitness values 

for each 
individual 

When the maximum generation 
number is reached, or the fitness 

stops improving,stop the algorithm 

GA starts, a number 
of random individual 
horns produced as 
the first generation 



nuSTORM Horn Optimization – Results 
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Shorter (2 m) + lower current (225 kA) 
+  smaller size! 

Changing the horn design without extending the target results in 
increasing µ+ in both 2000 µm and 3.8±10% GeV/c by 8.3% 



Horn Optimization – Results 
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Shorter (2 m) + lower current (225 kA) 
+  smaller size! 

Changing the horn design without extending the target results in 
increasing µ+ in both 2000 µm and 3.8±10% GeV/c by 8.3% 



Horn Optimization – Results (Cont’d)  
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µ+ in both 2000 µm and 3.8±10% GeV/c increased by ~ 16% (Compared to the pre-
optimization 38 cm Inconel + baseline horn) 

(If just changing the target length: ~ 5%) 

Even shorter (1.6 m) +  
Even lower current (219 kA) + 
Even smaller! 

Increase neutrino 
flux by 16%! 



Optimization cases in MICE 
•  Muon Ionization Cooling Experiment (MICE @ RAL) 

–  Step IV: 
•  Measurement of the cooling equation 

•  Measurement of the multiple scattering in the absorber materials 
–  Incident: 

•  Lost one of the matching  
   coils in SSD 

–  Action: 
•  Re-optimize the lattice to  
   obtain cooling and good  
   transmission 
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Optimization cases in MICE (Cont’d) 
•  Mismatch from missing the coil causes emittance growth 

and higher loss: 

 

•  Use metaheuristic algorithms to ensure demonstration of 
cooling is possible without M1 in SSD 
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6 mm initial normalized 4D emittance, 200±10 MeV/c, survived muons only 

Nominal Missing M1 in SSD 



Optimization setup – G4Beamline 

•  Optimization is based on particle tracking 
–  Performed in G4Beamline (author: T. Roberts, Muons Inc.) 
–  SA and GA are both used. 

•  MICE coils and currents – both SS and FC 
•  Model materials in channel to match MAUS as accurately as 

possible: 
•  Use initial beam generated by constant solenoid mode Penn 

beam matrix, which matches the Bz at the starting point. 
–  Beam starts at z=-3000 mm from the absorber (tracker0). 

Modified from P. Snopok’s G4BL input 
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Optimization details 

•  Track reconstruction in the trackers requires 
uniform Bz on axis, which is used as a constraint in 
the optimization; 

•  Objective function: 
– T2 * (ε4D_tracker1-ε4D_tracker0)/ε4D_tracker0 

•  T: transmission to TOF2 (trigger): guarantees good 
transmission 

–  ε4D_tracker0(1) defined at -+1800 mm from the absorber 
(tracker ref. planes, i.e. where emittance is measured) 

•  Initial beam has 2.5% momentum spread to model 
a more realistic transmission 
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Optimization result 
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Bz Pz βx,y 

ε4D 
T2: 253.23*0.77 
C: 277.98*0.77 
T1: 246.2*0.77 
M2: 257.85 
M1: 246.48 
FC: 229.86 
FC_down: -222.01 
M1_down: 0 
M2_down: -256.12 
T1_down: -246.2*0.71 
C_down: -277.98*0.71 
T2_down: -253.23*0.71 

90% transmission 
to TOF2 with +-  
5 MeV/c momentum 
spread 
FC are allowed to 
have different current, 
but in this  
configuration, 
FCs accidentally 
sit at the same 
current – good. 

~5% emittance  
reduction 

All coils operate 
at no higher their 
nominal values 



Conclusions 

•  Metaheuristic algorithms are extremely useful for 
design/operation optimizations with lots of 
variables or complicated performance mechanism; 

•  Using a MOGA, a nuSTORM target + horn combo 
can be optimized to deliver 16% more useful 
muons to the decay ring; 

•  Using a SOGA/SA, decent cooling with good 
transmission can be obtained even without the 
unavailable downstream matching coil in MICE; 

•  The algorithms can be easily applied to your 
project: whenever you need to make a decision! 
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QUESTIONS? YES OR NO, THANKS! 

Q & A 
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