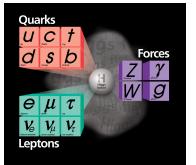
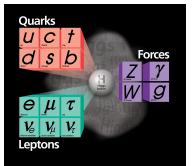
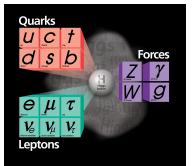
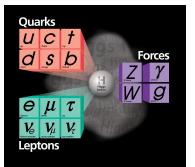
Muon Ionization Cooling Experiment


Pavel Snopok Illinois Institute of Technology, Chicago, IL and Fermilab, Batavia, IL

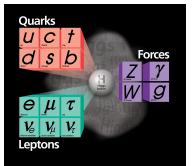
On behalf of MICE November 11, 2015



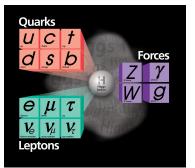



- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact lootprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.

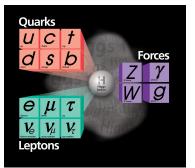
- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.



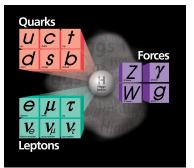
- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.

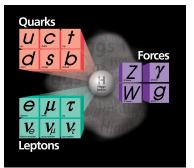


- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_{e}, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.



- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.


- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.

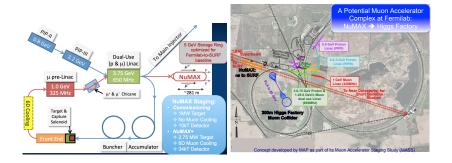


- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.

- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.

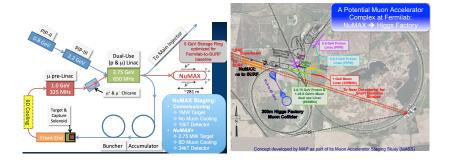
- Muons are ≈200 times heavier than electrons ⇒ can be accelerated in circular channels:
 - synchrotron radiation is negligible,
 - CoM energy is not limited by radiative effects,
 - compact footprint,
 - Higgs production advantages.
- Muons are elementary particles in the framework of the Standard Model ⇒ clean collisions, particle energy is utilized fully.
- Muons decay \Rightarrow neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e, \ \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu.$
- Muons provide a unique tool for addressing fundamental questions in physics, or for exploring the properties of materials.

• Muons are unstable, $\tau =$ 2.2 μ s at rest (relativity helps: at 2 TeV $\tau =$ 0.044 s).

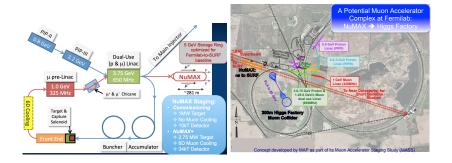

- rule of thumb: 1000 turns in the storage ring.
- Challenge: collect muons, form into a beam, and either accelerate to high energy or stop in a target.
- Challenge: get enough muons to do the job, and concentrate within a small target, or within a very bright beam.
- Challenge: decay products heat magnets and other components, create backgrounds in the detector, radiation damage is an issue.

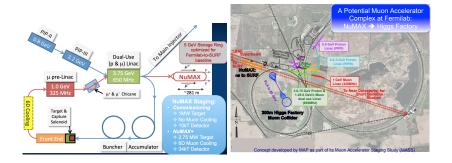
- Muons are unstable, $\tau =$ 2.2 μ s at rest (relativity helps: at 2 TeV $\tau =$ 0.044 s).
 - rule of thumb: 1000 turns in the storage ring.
- Challenge: collect muons, form into a beam, and either accelerate to high energy or stop in a target.
- Challenge: get enough muons to do the job, and concentrate within a small target, or within a very bright beam.
- Challenge: decay products heat magnets and other components, create backgrounds in the detector, radiation damage is an issue.

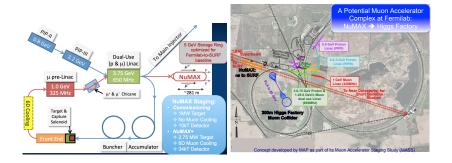
- Muons are unstable, $\tau =$ 2.2 μ s at rest (relativity helps: at 2 TeV $\tau =$ 0.044 s).
 - rule of thumb: 1000 turns in the storage ring.
- Challenge: collect muons, form into a beam, and either accelerate to high energy or stop in a target.
- Challenge: get enough muons to do the job, and concentrate within a small target, or within a very bright beam.
- Challenge: decay products heat magnets and other components, create backgrounds in the detector, radiation damage is an issue.


- Muons are unstable, $\tau =$ 2.2 μ s at rest (relativity helps: at 2 TeV $\tau =$ 0.044 s).
 - rule of thumb: 1000 turns in the storage ring.
- Challenge: collect muons, form into a beam, and either accelerate to high energy or stop in a target.
- Challenge: get enough muons to do the job, and concentrate within a small target, or within a very bright beam.
- Challenge: decay products heat magnets and other components, create backgrounds in the detector, radiation damage is an issue.

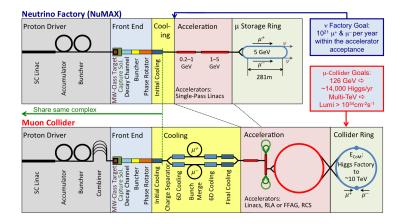
- Muons are unstable, $\tau =$ 2.2 μ s at rest (relativity helps: at 2 TeV $\tau =$ 0.044 s).
 - rule of thumb: 1000 turns in the storage ring.
- Challenge: collect muons, form into a beam, and either accelerate to high energy or stop in a target.
- Challenge: get enough muons to do the job, and concentrate within a small target, or within a very bright beam.
- Challenge: decay products heat magnets and other components, create backgrounds in the detector, radiation damage is an issue.


- Neutrino Factory is a precision microscope that will likely be needed to fully probe the physics of the neutrino sector.
- A multi-TeV muon collider may be the only cost-effective route to lepton collider capabilities at energies > 5 TeV.
- Muon accelerators offer unique potential for the future of high energy physics research.
- Bright muon sources can be used for other applications.

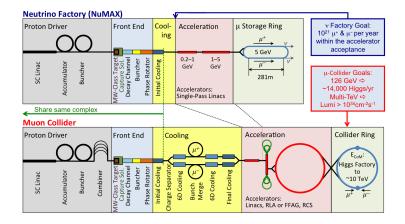

- Neutrino Factory is a precision microscope that will likely be needed to fully probe the physics of the neutrino sector.
- A multi-TeV muon collider may be the only cost-effective route to lepton collider capabilities at energies > 5 TeV.
- Muon accelerators offer unique potential for the future of high energy physics research.
- Bright muon sources can be used for other applications.



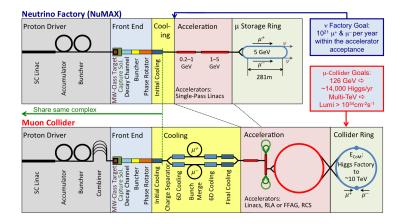
- Neutrino Factory is a precision microscope that will likely be needed to fully probe the physics of the neutrino sector.
- A multi-TeV muon collider may be the only cost-effective route to lepton collider capabilities at energies > 5 TeV.
- Muon accelerators offer unique potential for the future of high energy physics research.
- Bright muon sources can be used for other applications.



- Neutrino Factory is a precision microscope that will likely be needed to fully probe the physics of the neutrino sector.
- A multi-TeV muon collider may be the only cost-effective route to lepton collider capabilities at energies > 5 TeV.
- Muon accelerators offer unique potential for the future of high energy physics research.
- Bright muon sources can be used for other applications.

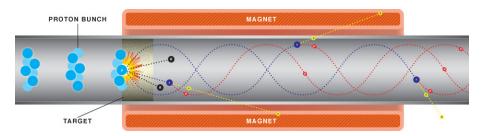

- Neutrino Factory is a precision microscope that will likely be needed to fully probe the physics of the neutrino sector.
- A multi-TeV muon collider may be the only cost-effective route to lepton collider capabilities at energies > 5 TeV.
- Muon accelerators offer unique potential for the future of high energy physics research.
- Bright muon sources can be used for other applications.

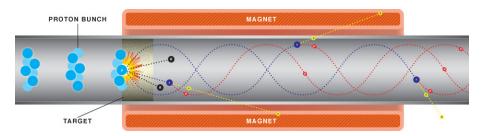
Synergies between NF and MC


- Large part of the front end is common to NF and MC, common technologies down the accelerator chain.
- R&D for both could be staged, and each stage can be used as an R&D platform for the subsequent one.

Synergies between NF and MC

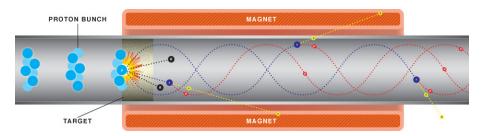
- Large part of the front end is common to NF and MC, common technologies down the accelerator chain.
- R&D for both could be staged, and each stage can be used as an R&D platform for the subsequent one.


Synergies between NF and MC

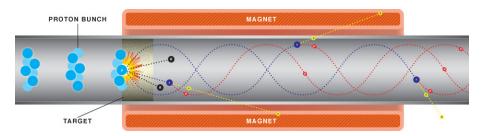

- Large part of the front end is common to NF and MC, common technologies down the accelerator chain.
- R&D for both could be staged, and each stage can be used as an R&D platform for the subsequent one.

Muon Ionization Cooling: Why Cool?

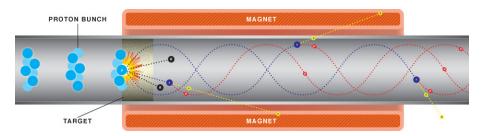
- Intense muon source: $p \rightarrow \pi \rightarrow \mu$. Very large initial emittance.
- Need to capture as much as possible of the initial large emittance.
- Large aperture acceleration systems are expensive ⇒ for cost-efficiency need to reduce emittances prior to accelerating ("cool the beam").
- Cooling requirements range from modest, predominantly transverse, to very ambitious (O(10⁶)) six-dimensional cooling for the ultimate MC.
- Need to act fast since muons are unstable. The only feasible option is ionization cooling.

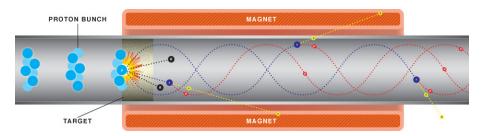


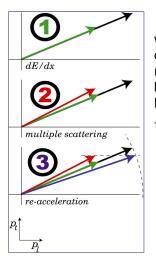
• Intense muon source: $p \rightarrow \pi \rightarrow \mu$. Very large initial emittance.


Need to capture as much as possible of the initial large emittance.

- Large aperture acceleration systems are expensive ⇒ for cost-efficiency need to reduce emittances prior to accelerating ("cool the beam").
- Cooling requirements range from modest, predominantly transverse, to very ambitious (O(10⁶)) six-dimensional cooling for the ultimate MC.
- Need to act fast since muons are unstable. The only feasible option is ionization cooling.



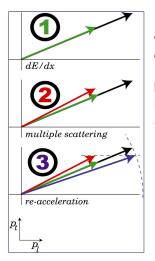

- Intense muon source: $p \rightarrow \pi \rightarrow \mu$. Very large initial emittance.
- Need to capture as much as possible of the initial large emittance.
- Large aperture acceleration systems are expensive ⇒ for cost-efficiency need to reduce emittances prior to accelerating ("cool the beam").
- Cooling requirements range from modest, predominantly transverse, to very ambitious $(O(10^6))$ six-dimensional cooling for the ultimate MC.
- Need to act fast since muons are unstable. The only feasible option is ionization cooling.


- Intense muon source: $p \rightarrow \pi \rightarrow \mu$. Very large initial emittance.
- Need to capture as much as possible of the initial large emittance.
- Large aperture acceleration systems are expensive ⇒ for cost-efficiency need to reduce emittances prior to accelerating ("cool the beam").
- Cooling requirements range from modest, predominantly transverse, to very ambitious $(O(10^6))$ six-dimensional cooling for the ultimate MC.
- Need to act fast since muons are unstable. The only feasible option is ionization cooling.

- Intense muon source: $p \rightarrow \pi \rightarrow \mu$. Very large initial emittance.
- Need to capture as much as possible of the initial large emittance.
- Large aperture acceleration systems are expensive ⇒ for cost-efficiency need to reduce emittances prior to accelerating ("cool the beam").
- Cooling requirements range from modest, predominantly transverse, to very ambitious ($O(10^6)$) six-dimensional cooling for the ultimate MC.
- Need to act fast since muons are unstable. The only feasible option is ionization cooling.

- Intense muon source: $p \rightarrow \pi \rightarrow \mu$. Very large initial emittance.
- Need to capture as much as possible of the initial large emittance.
- Large aperture acceleration systems are expensive ⇒ for cost-efficiency need to reduce emittances prior to accelerating ("cool the beam").
- Cooling requirements range from modest, predominantly transverse, to very ambitious (*O*(10⁶)) six-dimensional cooling for the ultimate MC.
- Need to act fast since muons are unstable. The only feasible option is ionization cooling.

$$\frac{d\epsilon_{N}}{ds}\approx-\frac{1}{\beta^{2}}\left\langle \frac{dE_{\mu}}{ds}\right\rangle \frac{\epsilon_{N}}{E_{\mu}}+\frac{\beta_{\perp}(13.6\ \text{MeV})^{2}}{2\beta^{3}E_{\mu}m_{\mu}X_{0}},$$


where $d\epsilon_N/ds$ is the rate of normalized emittance change within the absorber; βc , E_{μ} , and m_{μ} are the muon velocity, energy, and mass; β_{\perp} is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_{\perp} , large X_0 .

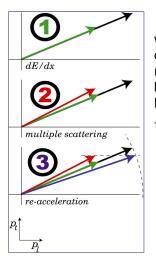
Energy loss in material:

 all three components of the particle's momentum are affected.

Unavoidable multiple scattering:

Re-acceleration to restore energy lost in material

$$\frac{d\epsilon_{N}}{ds}\approx-\frac{1}{\beta^{2}}\left\langle \frac{dE_{\mu}}{ds}\right\rangle \frac{\epsilon_{N}}{E_{\mu}}+\frac{\beta_{\perp}(13.6\ \text{MeV})^{2}}{2\beta^{3}E_{\mu}m_{\mu}X_{0}},$$

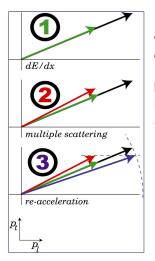

where $d\epsilon_N/ds$ is the rate of normalized emittance change within the absorber; βc , E_{μ} , and m_{μ} are the muon velocity, energy, and mass; β_{\perp} is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_{\perp} , large X_0 .

Energy loss in material:

- all three components of the particle's momentum are affected.
- Unavoidable multiple scattering:

 can be minimized by choosing the material with large X₀ bence, low Z.

Re-acceleration to restore energy lost in material

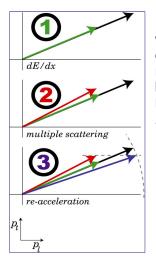


$$\frac{d\epsilon_{N}}{ds}\approx-\frac{1}{\beta^{2}}\left\langle \frac{dE_{\mu}}{ds}\right\rangle \frac{\epsilon_{N}}{E_{\mu}}+\frac{\beta_{\perp}(13.6\text{ MeV})^{2}}{2\beta^{3}E_{\mu}m_{\mu}X_{0}},$$

where $d\epsilon_N/ds$ is the rate of normalized emittance change within the absorber; βc , E_{μ} , and m_{μ} are the muon velocity, energy, and mass; β_{\perp} is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_{\perp} , large X_0 .

Energy loss in material:

- all three components of the particle's momentum are affected.
- Inavoidable multiple scattering:
 - can be minimized by choosing the material with large X₀, hence, low Z.
- Re-acceleration to restore energy lost in material

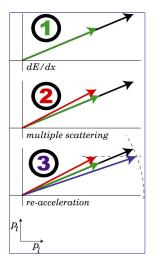

$$\frac{d\epsilon_{N}}{ds}\approx-\frac{1}{\beta^{2}}\left\langle \frac{dE_{\mu}}{ds}\right\rangle \frac{\epsilon_{N}}{E_{\mu}}+\frac{\beta_{\perp}(13.6\text{ MeV})^{2}}{2\beta^{3}E_{\mu}m_{\mu}X_{0}},$$

where $d\epsilon_N/ds$ is the rate of normalized emittance change within the absorber; βc , E_{μ} , and m_{μ} are the muon velocity, energy, and mass; β_{\perp} is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_{\perp} , large X_0 .

- Energy loss in material:
 - all three components of the particle's momentum are affected.
- Onavoidable multiple scattering:
 - can be minimized by choosing the material with large X_0 , hence, low Z.

8/34

Re-acceleration to restore energy lost in material

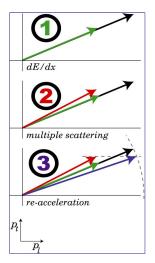

$$\frac{d\epsilon_{N}}{ds}\approx-\frac{1}{\beta^{2}}\left\langle \frac{dE_{\mu}}{ds}\right\rangle \frac{\epsilon_{N}}{E_{\mu}}+\frac{\beta_{\perp}(13.6\text{ MeV})^{2}}{2\beta^{3}E_{\mu}m_{\mu}X_{0}},$$

where $d\epsilon_N/ds$ is the rate of normalized emittance change within the absorber; βc , E_{μ} , and m_{μ} are the muon velocity, energy, and mass; β_{\perp} is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_{\perp} , large X_0 .

- Energy loss in material:
 - all three components of the particle's momentum are affected.
- Onavoidable multiple scattering:
 - can be minimized by choosing the material with large X_0 , hence, low Z.

 Re-acceleration to restore energy lost in material
 only the longitudinal component of momentum is affected.

8/34

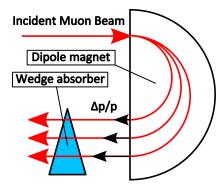


$$\frac{d\epsilon_{N}}{ds}\approx-\frac{1}{\beta^{2}}\left\langle \frac{dE_{\mu}}{ds}\right\rangle \frac{\epsilon_{N}}{E_{\mu}}+\frac{\beta_{\perp}(13.6\text{ MeV})^{2}}{2\beta^{3}E_{\mu}m_{\mu}X_{0}},$$

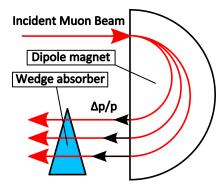
where $d\epsilon_N/ds$ is the rate of normalized emittance change within the absorber; βc , E_{μ} , and m_{μ} are the muon velocity, energy, and mass; β_{\perp} is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_{\perp} , large X_0 .

- Energy loss in material:
 - all three components of the particle's momentum are affected.
- Onavoidable multiple scattering:
 - can be minimized by choosing the material with large X_0 , hence, low Z.
 - Re-acceleration to restore energy lost in material
 - only the longitudinal component of momentum is affected.

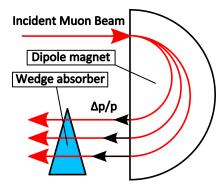
Ionization cooling principle

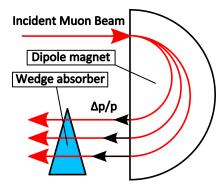


$$\frac{d\epsilon_{N}}{ds}\approx-\frac{1}{\beta^{2}}\left\langle \frac{dE_{\mu}}{ds}\right\rangle \frac{\epsilon_{N}}{E_{\mu}}+\frac{\beta_{\perp}(13.6\text{ MeV})^{2}}{2\beta^{3}E_{\mu}m_{\mu}X_{0}},$$

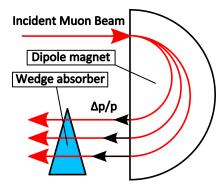

where $d\epsilon_N/ds$ is the rate of normalized emittance change within the absorber; βc , E_{μ} , and m_{μ} are the muon velocity, energy, and mass; β_{\perp} is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_{\perp} , large X_0 .

- Energy loss in material:
 - all three components of the particle's momentum are affected.
- Onavoidable multiple scattering:
 - can be minimized by choosing the material with large *X*₀, hence, low *Z*.
- Re-acceleration to restore energy lost in material
 - only the longitudinal component of momentum is affected.


8/34


- pass dispersive beam through a wedge-shaped absorber;
- particles with more momentum pass through more material;
- beam energy spread is reduced;
- beam transverse size is increased.

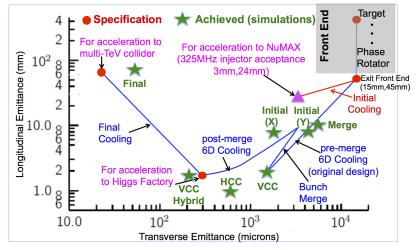
- pass dispersive beam through a wedge-shaped absorber;
- particles with more momentum pass through more material;
- beam energy spread is reduced;
- beam transverse size is increased.


- pass dispersive beam through a wedge-shaped absorber;
- particles with more momentum pass through more material;
- beam energy spread is reduced;
- beam transverse size is increased.

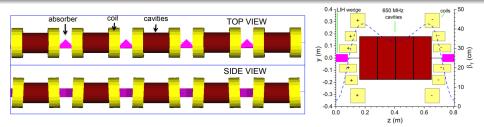
Emittance exchange principle:

- pass dispersive beam through a wedge-shaped absorber;
- particles with more momentum pass through more material;
- beam energy spread is reduced;

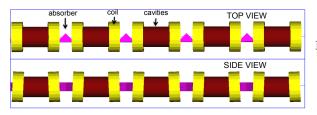
beam transverse size is increased.

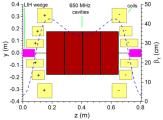


- pass dispersive beam through a wedge-shaped absorber;
- particles with more momentum pass through more material;
- beam energy spread is reduced;
- beam transverse size is increased.

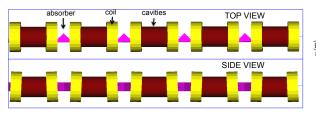

Cooling channels

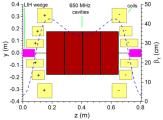
Emittance evolution diagram



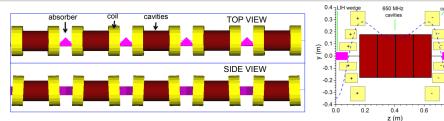

Cooling channels for different applications

- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
- Channel is tapered:





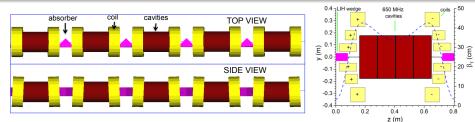
- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
- Channel is tapered:



- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
- Channel is tapered:

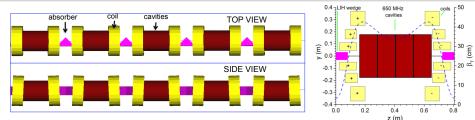
- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
 Channel is tapered:
 - early stage: cells 276 cm long, 325 Miliz RF, axial 8 ~3 1, beta function ~40 cm, colls far from axis/RF.
 late stage: cells 60 cm long, 650 Miliz RF, axial 8 ~12 1, beta function

50

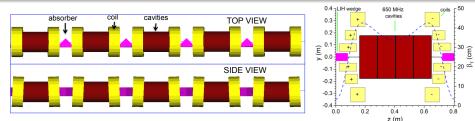

40

³⁰ (E

20 E

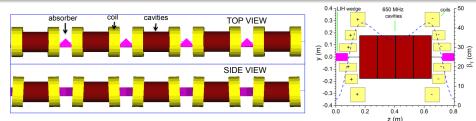

10

0.8

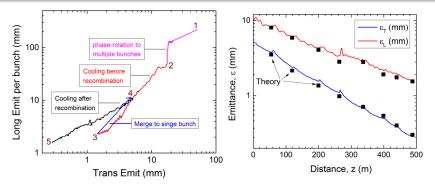


- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
- Channel is tapered:
 - early stage: cells 275 cm long, 325 MHz RF, axial B ~3 T, beta function ~40 cm, coils far from axis/RF.
 - late stage: cells 80 cm long, 650 MHz RF, exial B ~12 T, beta function ~3 cm, colls near axis/RE

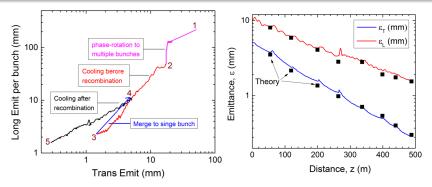
12/34



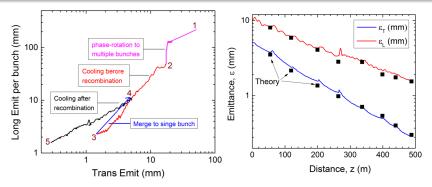
- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
- Channel is tapered:
 - early stage: cells 275 cm long, 325 MHz RF, axial B ${\sim}3$ T, beta function ${\sim}40$ cm, coils far from axis/RF.
 - late stage: cells 80 cm long, 650 MHz RF, axial B ${\sim}12$ T, beta function ${\sim}3$ cm, coils near axis/RF.

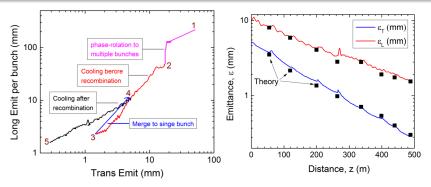

- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
- Channel is tapered:
 - early stage: cells 275 cm long, 325 MHz RF, axial B ${\sim}3$ T, beta function ${\sim}40$ cm, coils far from axis/RF.
 - late stage: cells 80 cm long, 650 MHz RF, axial B ${\sim}12$ T, beta function ${\sim}3$ cm, coils near axis/RF.

12/34

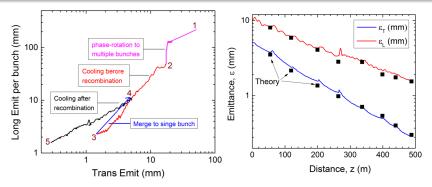


- Rectilinear cooling channel based on the concept by V. Balbekov (Fermilab).
- Simple geometry avoids engineering challenges of previously considered schemes (ring/helix).
- Coils are tilted to generate dispersion at the wedge absorbers.
- Small beta function at the absorber to minimize multiple scattering.
- Channel is tapered:
 - early stage: cells 275 cm long, 325 MHz RF, axial B ${\sim}3$ T, beta function ${\sim}40$ cm, coils far from axis/RF.
 - late stage: cells 80 cm long, 650 MHz RF, axial B ${\sim}12$ T, beta function ${\sim}3$ cm, coils near axis/RF.

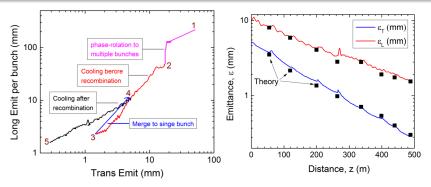

12/34


- Emittance evolution plot (left): reaching design goals of 0.3 mm in transverse and 1.5 mm in longitudinal emittance.
- Emittance evolution after bunch merge (right): good agreement with theoretical predictions.
- Detailed end-to-end simulations.
- 6D emittance reduction by a factor of 10⁵.

- Emittance evolution plot (left): reaching design goals of 0.3 mm in transverse and 1.5 mm in longitudinal emittance.
- Emittance evolution after bunch merge (right): good agreement with theoretical predictions.
- Detailed end-to-end simulations.
- 6D emittance reduction by a factor of 10⁵.

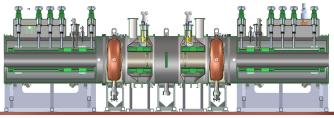


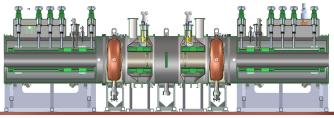
- Emittance evolution plot (left): reaching design goals of 0.3 mm in transverse and 1.5 mm in longitudinal emittance.
- Emittance evolution after bunch merge (right): good agreement with theoretical predictions.
- Detailed end-to-end simulations.
- 6D emittance reduction by a factor of 10⁵.



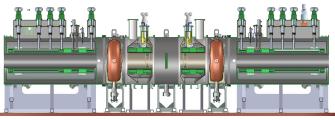
- Emittance evolution plot (left): reaching design goals of 0.3 mm in transverse and 1.5 mm in longitudinal emittance.
- Emittance evolution after bunch merge (right): good agreement with theoretical predictions.
- Detailed end-to-end simulations.
- 6D emittance reduction by a factor of 10⁵.

Meets Higgs Factory emittance requirements.

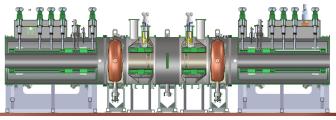

- Emittance evolution plot (left): reaching design goals of 0.3 mm in transverse and 1.5 mm in longitudinal emittance.
- Emittance evolution after bunch merge (right): good agreement with theoretical predictions.
- Detailed end-to-end simulations.
- 6D emittance reduction by a factor of 10⁵.
 - Meets Higgs Factory emittance requirements.


- Emittance evolution plot (left): reaching design goals of 0.3 mm in transverse and 1.5 mm in longitudinal emittance.
- Emittance evolution after bunch merge (right): good agreement with theoretical predictions.
- Detailed end-to-end simulations.
- 6D emittance reduction by a factor of 10⁵.
 - Meets Higgs Factory emittance requirements.

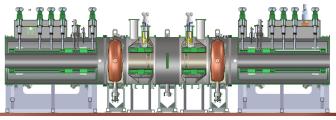
MICE: Muon Ionization Cooling Experiment



- Design, engineer and fabricate a section of cooling channel.
- Place the cooling apparatus in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of ionization cooling.
- Measure a reduction in transverse beam size with a precision of 1%.
- Develop and thoroughly test simulation and data analysis software.
- Step IV: demonstrate transverse emittance reduction (2015-2016).
- Cooling demonstration configuration (shown in the figure): demonstrate sustainable transverse cooling with re-acceleration (2017-2018).

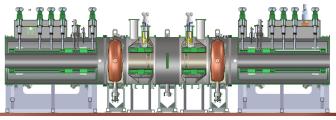


- Design, engineer and fabricate a section of cooling channel.
- Place the cooling apparatus in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of ionization cooling.
- Measure a reduction in transverse beam size with a precision of 1%.
- Develop and thoroughly test simulation and data analysis software.
- Step IV: demonstrate transverse emittance reduction (2015-2016).
- Cooling demonstration configuration (shown in the figure): demonstrate sustainable transverse cooling with re-acceleration (2017-2018).

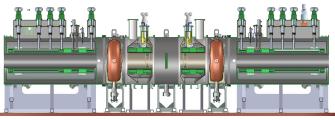


- Design, engineer and fabricate a section of cooling channel.
- Place the cooling apparatus in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of ionization cooling.
- Measure a reduction in transverse beam size with a precision of 1%.
- Develop and thoroughly test simulation and data analysis software.
- Step IV: demonstrate transverse emittance reduction (2015-2016).
- Cooling demonstration configuration (shown in the figure): demonstrate sustainable transverse cooling with re-acceleration (2017-2018).

- Design, engineer and fabricate a section of cooling channel.
- Place the cooling apparatus in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of ionization cooling.
- Measure a reduction in transverse beam size with a precision of 1%.
- Develop and thoroughly test simulation and data analysis software.
- Step IV: demonstrate transverse emittance reduction (2015-2016).
- Cooling demonstration configuration (shown in the figure): demonstrate sustainable transverse cooling with re-acceleration (2017-2018).

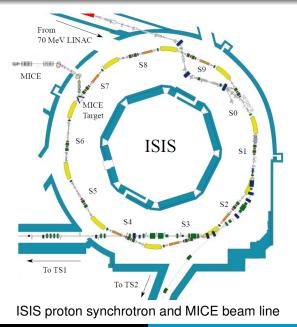


MICE - international experiment at Rutherford Appleton Laboratory in UK

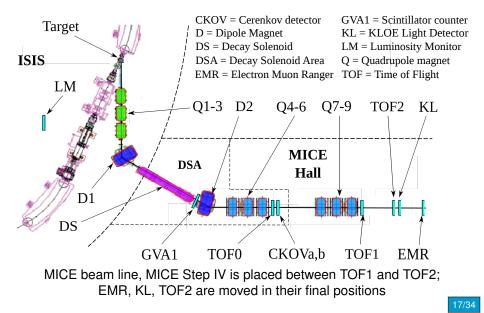

- Design, engineer and fabricate a section of cooling channel.
- Place the cooling apparatus in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of ionization cooling.
- Measure a reduction in transverse beam size with a precision of 1%.
- Develop and thoroughly test simulation and data analysis software.
- Step IV: demonstrate transverse emittance reduction (2015-2016).

Pavel Snopok, IIT/Fermilab

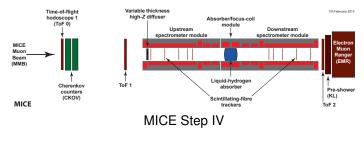
 Cooling demonstration configuration (shown in the figure): demonstrate sustainable transverse cooling with re-acceleration (2017-2018).

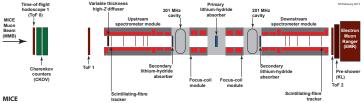


- Design, engineer and fabricate a section of cooling channel.
- Place the cooling apparatus in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of ionization cooling.
- Measure a reduction in transverse beam size with a precision of 1%.
- Develop and thoroughly test simulation and data analysis software.
- Step IV: demonstrate transverse emittance reduction (2015-2016).
- Cooling demonstration configuration (shown in the figure): demonstrate sustainable transverse cooling with re-acceleration (2017-2018).


- Design, engineer and fabricate a section of cooling channel.
- Place the cooling apparatus in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of ionization cooling.
- Measure a reduction in transverse beam size with a precision of 1%.
- Develop and thoroughly test simulation and data analysis software.
- Step IV: demonstrate transverse emittance reduction (2015-2016).
- Cooling demonstration configuration (shown in the figure): demonstrate sustainable transverse cooling with re-acceleration (2017-2018).

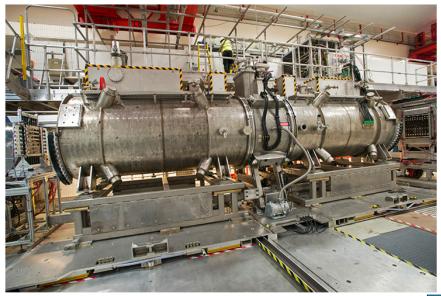
MICE and ISIS





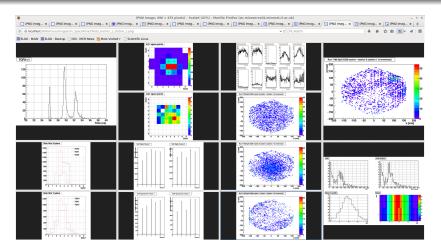
MICE beam line

MICE configurations



MICE Ionization Cooling Demonstration Step

MICE Step IV on the floor



MICE Step IV on the floor

MICE online reconstruction of data

 MICE has multiple detectors for particle localization and identification: Time-of-Flight, Cherenkov, sci-fi trackers, KL calorimeter, Electron Muon Ranger.

• High resolution particle-by-particle diagnostics:

- measure individual particle's position and momentum to get fully correlated beam measurements;
- reject beam impurities.
- Large aperture superconducting magnets:

High gradient RF cavities:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solanoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced guench.
- High gradient RF cavities:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 Ecours Colls (EC);
 - magnetically coupled -- mutually induced guence
- High gradient RF cavities:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.

High gradient RF cavities:

- two 10.3 MV/m, 201.25 MHz RF cavities;
- 4 MW peak RF power;
- particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:
 - 21 liters liquid hydrogen in 150 micron thick containment vessel;
 - 65 mm thick lithium hydride disk.

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:
 - 21 liters liquid hydrogen in 150 micron thick containment vessel;
 65 mm thick lithium hydride disk

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:
 - 21 liters liquid hydrogen in 150 micron thick containment vessel;
 - 65 mm thick lithium hydride disk.

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:
 - 21 liters liquid hydrogen in 150 micron thick containment vessel;
 - 65 mm thick lithium hydride disk.

- High resolution particle-by-particle diagnostics:
 - measure individual particle's position and momentum to get fully correlated beam measurements;
 - reject beam impurities.
- Large aperture superconducting magnets:
 - Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
 - Focus Coils (FC);
 - magnetically coupled mutually induced quench.
- High gradient RF cavities:
 - two 10.3 MV/m, 201.25 MHz RF cavities;
 - 4 MW peak RF power;
 - particle-by-particle phase measurement.
- Liquid and solid low-Z absorbers:
 - 21 liters liquid hydrogen in 150 micron thick containment vessel;
 - 65 mm thick lithium hydride disk.

- Focus Coil on the beamline and cooling down.
- SSU fully trained to operating field; awaiting soak test.
- SSD retraining in-situ in progress.
- Failure of LTS lead on MatchCoil1 in SSD:

- Focus Coil on the beamline and cooling down.
- SSU fully trained to operating field; awaiting soak test.
- SSD retraining in-situ in progress.
- Failure of LTS lead on MatchCoil1 in SSD:

- Focus Coil on the beamline and cooling down.
- SSU fully trained to operating field; awaiting soak test.
- SSD retraining in-situ in progress.
- Failure of LTS lead on MatchCoil1 in SSD:

- Focus Coil on the beamline and cooling down.
- SSU fully trained to operating field; awaiting soak test.
- SSD retraining in-situ in progress.
- Failure of LTS lead on MatchCoil1 in SSD:
 - key physics measurements still available.
 - repair plan in preparation after Step IV

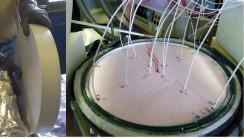
- Focus Coil on the beamline and cooling down.
- SSU fully trained to operating field; awaiting soak test.
- SSD retraining in-situ in progress.
- Failure of LTS lead on MatchCoil1 in SSD:
 - key physics measurements still available.
 - repair plan in preparation after Step IV.

23/34

- Focus Coil on the beamline and cooling down.
- SSU fully trained to operating field; awaiting soak test.
- SSD retraining in-situ in progress.
- Failure of LTS lead on MatchCoil1 in SSD:
 - key physics measurements still available.
 - repair plan in preparation after Step IV.

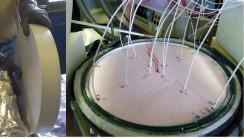
23/34

- Focus Coil on the beamline and cooling down.
- SSU fully trained to operating field; awaiting soak test.
- SSD retraining in-situ in progress.
- Failure of LTS lead on MatchCoil1 in SSD:
 - key physics measurements still available.
 - repair plan in preparation after Step IV.



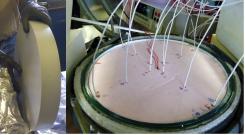
• 350 mm thick liquid hydrogen absorber:

- 21 liters;
- enclosed by four 150 micron curved AI windows,
- installed.
- 65 mm lithium hydride absorber:



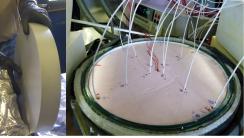
• 350 mm thick liquid hydrogen absorber:

- 21 liters;
- enclosed by four 150 micron curved Al windows,
- installed.
- 65 mm lithium hydride absorber:



• 350 mm thick liquid hydrogen absorber:

- 21 liters;
- enclosed by four 150 micron curved Al windows,
- installed.
- 65 mm lithium hydride absorber:


• 350 mm thick liquid hydrogen absorber:

- 21 liters;
- enclosed by four 150 micron curved Al windows,
- installed.
- 65 mm lithium hydride absorber:

will be installed, replacing LH2 absorber, early in 2016 for Step IV.

- 350 mm thick liquid hydrogen absorber:
 - 21 liters;
 - enclosed by four 150 micron curved Al windows,
 - installed.
- 65 mm lithium hydride absorber:
 - will be installed, replacing LH2 absorber, early in 2016 for Step IV.

- 350 mm thick liquid hydrogen absorber:
 - 21 liters;
 - enclosed by four 150 micron curved Al windows,
 - installed.
- 65 mm lithium hydride absorber:
 - will be installed, replacing LH2 absorber, early in 2016 for Step IV.

- 350 mm thick liquid hydrogen absorber:
 - 21 liters;
 - enclosed by four 150 micron curved Al windows,
 - installed.
- 65 mm lithium hydride absorber:
 - will be installed, replacing LH2 absorber, early in 2016 for Step IV.

- Two normal conducting RF cavities.
- 201.25 MHz, 10.3 MV/m.
- Beryllium windows provide enhanced on-axis fields.
- Successful operation in magnetic field in 2015 at MuCool Test Area.
- Installation in 2016–2017, following Step IV.

• Two normal conducting RF cavities.

- 201.25 MHz, 10.3 MV/m.
- Beryllium windows provide enhanced on-axis fields.
- Successful operation in magnetic field in 2015 at MuCool Test Area.
- Installation in 2016–2017, following Step IV.

- Two normal conducting RF cavities.
- 201.25 MHz, 10.3 MV/m.
- Beryllium windows provide enhanced on-axis fields.
- Successful operation in magnetic field in 2015 at MuCool Test Area.
- Installation in 2016–2017, following Step IV.

- Two normal conducting RF cavities.
- 201.25 MHz, 10.3 MV/m.
- Beryllium windows provide enhanced on-axis fields.
- Successful operation in magnetic field in 2015 at MuCool Test Area.
- Installation in 2016–2017, following Step IV.

- Two normal conducting RF cavities.
- 201.25 MHz, 10.3 MV/m.
- Beryllium windows provide enhanced on-axis fields.
- Successful operation in magnetic field in 2015 at MuCool Test Area.
- Installation in 2016–2017, following Step IV.

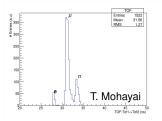


- Two normal conducting RF cavities.
- 201.25 MHz, 10.3 MV/m.
- Beryllium windows provide enhanced on-axis fields.
- Successful operation in magnetic field in 2015 at MuCool Test Area.
- Installation in 2016–2017, following Step IV.

Detectors

• Three scintillating TOF stations:

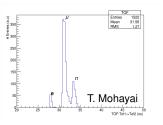
- time resolution \sim 50 ps;
- commissioned in 2009.
- Two Scintillating Fiber Trackers:
 - \bullet position resolution \sim 0.7 mm;
 - simulated momentum resolution ~ 2 MeV/c.
- Threshold Cherenkov counter.
- KL pre-shower detector.

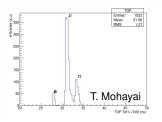

Electron-muon ranger.

Detectors

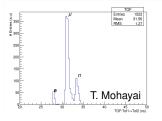
- Three scintillating TOF stations:
 - time resolution \sim 50 ps;
 - commissioned in 2009.
- Two Scintillating Fiber Trackers:
 - position resolution \sim 0.7 mm;
 - simulated momentum resolution ~ 2 MeV/c.
- Threshold Cherenkov counter.
- KL pre-shower detector.

Electron-muon ranger

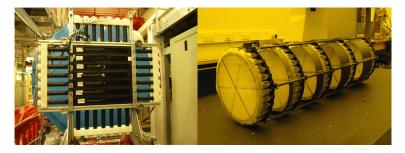

- Three scintillating TOF stations:
 - time resolution \sim 50 ps;
 - commissioned in 2009.
- Two Scintillating Fiber Trackers:
 - position resolution \sim 0.7 mm;
 - simulated momentum resolution ~ 2 MeV/c.
- Threshold Cherenkov counter.
- KL pre-shower detector
- Electron-muon ranger

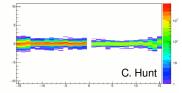


- Three scintillating TOF stations:
 - time resolution \sim 50 ps;
 - commissioned in 2009.
- Two Scintillating Fiber Trackers:
 - position resolution \sim 0.7 mm;
 - simulated momentum resolution ~ 2 MeV/c.
- Threshold Cherenkov counter.
- KL pre-shower detector.
- Electron-muon ranger.

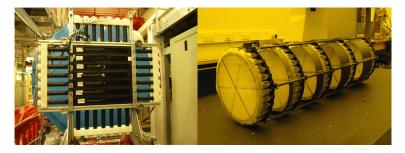


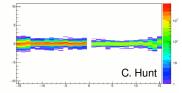
- Three scintillating TOF stations:
 - time resolution \sim 50 ps;
 - commissioned in 2009.
- Two Scintillating Fiber Trackers:
 - position resolution ~ 0.7 mm;
 - simulated momentum resolution ~ 2 MeV/c.
- Threshold Cherenkov counter.
- KL pre-shower detector.
- Electron-muon ranger.

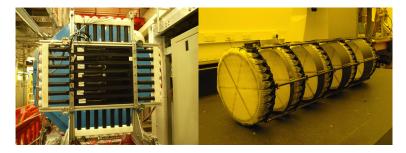


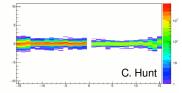


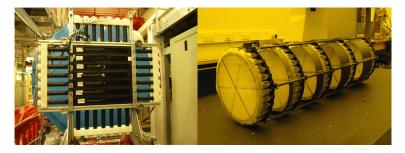
- Three scintillating TOF stations:
 - time resolution \sim 50 ps;
 - commissioned in 2009.
- Two Scintillating Fiber Trackers:
 - position resolution ~ 0.7 mm;
 - simulated momentum resolution ~ 2 MeV/c.
- Threshold Cherenkov counter.
- KL pre-shower detector.
- Electron-muon ranger.

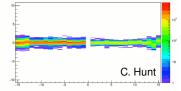


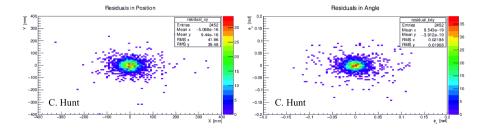

Smoothed Residuals per Plane

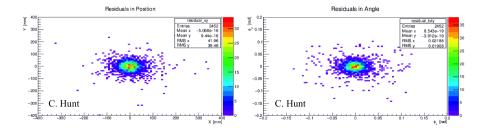

- PID detectors commissioned in 2010–2013.
- Trackers commissioned in June 2015,
 - await final push to improve efficiency.


Smoothed Residuals per Plane

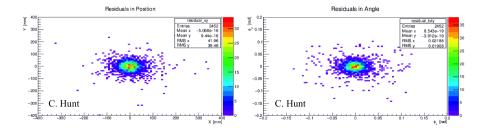

- PID detectors commissioned in 2010–2013.
- Trackers commissioned in June 2015,
 await final push to improve efficiency.

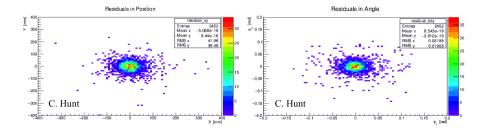



- PID detectors commissioned in 2010–2013.
- Trackers commissioned in June 2015,
 - await final push to improve efficiency.



- PID detectors commissioned in 2010–2013.
- Trackers commissioned in June 2015,
 - await final push to improve efficiency.


- Project measured tracks between detectors with magnets off.
- Compare position of tracks with expected position.
- Alignments at (expected) mm/mrad level
- Final numbers await error analysis.

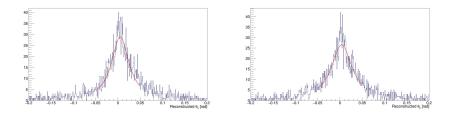


- Project measured tracks between detectors with magnets off.
- Compare position of tracks with expected position.
 - Spread in positions due to scattering in windows.
- Alignments at (expected) mm/mrad level
- Final numbers await error analysis.

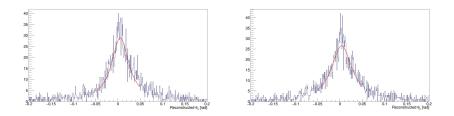
- Project measured tracks between detectors with magnets off.
- Compare position of tracks with expected position.
 - Spread in positions due to scattering in windows.
- Alignments at (expected) mm/mrad level.
- Final numbers await error analysis.

- Project measured tracks between detectors with magnets off.
- Compare position of tracks with expected position.
 - Spread in positions due to scattering in windows.
- Alignments at (expected) mm/mrad level.
- Final numbers await error analysis.

- Project measured tracks between detectors with magnets off.
- Compare position of tracks with expected position.
 - Spread in positions due to scattering in windows.
- Alignments at (expected) mm/mrad level.
- Final numbers await error analysis.

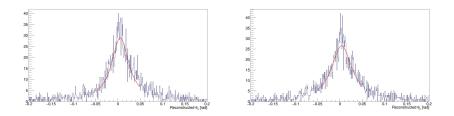


- Project measured tracks between detectors with magnets off.
- Compare position of tracks with expected position.
 - Spread in positions due to scattering in windows.
- Alignments at (expected) mm/mrad level.
- Final numbers await error analysis.

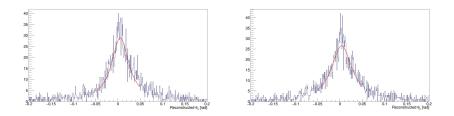

- Project measured tracks between detectors with magnets off.
- Compare position of tracks with expected position.
 - Spread in positions due to scattering in windows.
- Alignments at (expected) mm/mrad level.
- Final numbers await error analysis.

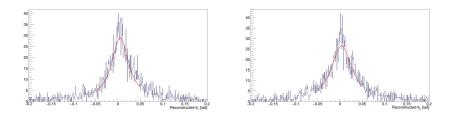
Beam-based alignment of solenoid tilt to tracker:

- examine alignment of helix formed by each particle
- find "best fit tilt";
- systematic error analysis underway.
- Beam-based alignment of trackers to magnets:

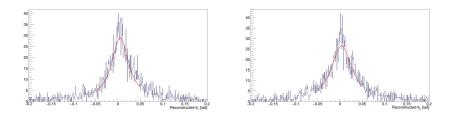


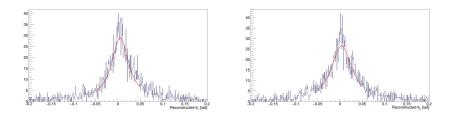
• Beam-based alignment of solenoid tilt to tracker:

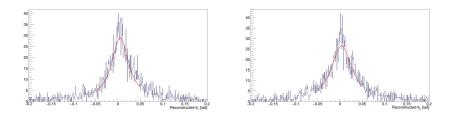

- examine alignment of helix formed by each particle;
- find "best fit tilt";
- systematic error analysis underway.
- Beam-based alignment of trackers to magnets:



- Beam-based alignment of solenoid tilt to tracker:
 - examine alignment of helix formed by each particle;
 - find "best fit tilt";
 - systematic error analysis underway.
- Beam-based alignment of trackers to magnets:




- Beam-based alignment of solenoid tilt to tracker:
 - examine alignment of helix formed by each particle;
 - find "best fit tilt";
 - systematic error analysis underway.
- Beam-based alignment of trackers to magnets:
 - o projeci particles from tracker to tracker, with magnets on;
 - calculate transfer matrix, compare with expected transfer matrix.


- Beam-based alignment of solenoid tilt to tracker:
 - examine alignment of helix formed by each particle;
 - find "best fit tilt";
 - systematic error analysis underway.
- Beam-based alignment of trackers to magnets:
 - project particles from tracker to tracker, with magnets on;
 - calculate transfer matrix, compare with expected transfer matrix.

- Beam-based alignment of solenoid tilt to tracker:
 - examine alignment of helix formed by each particle;
 - find "best fit tilt";
 - systematic error analysis underway.
- Beam-based alignment of trackers to magnets:
 - project particles from tracker to tracker, with magnets on;
 - calculate transfer matrix, compare with expected transfer matrix.

- Beam-based alignment of solenoid tilt to tracker:
 - examine alignment of helix formed by each particle;
 - find "best fit tilt";
 - systematic error analysis underway.
- Beam-based alignment of trackers to magnets:
 - project particles from tracker to tracker, with magnets on;
 - calculate transfer matrix, compare with expected transfer matrix.

- Beam-based alignment of solenoid tilt to tracker:
 - examine alignment of helix formed by each particle;
 - find "best fit tilt";
 - systematic error analysis underway.
- Beam-based alignment of trackers to magnets:
 - project particles from tracker to tracker, with magnets on;
 - calculate transfer matrix, compare with expected transfer matrix.

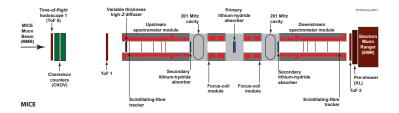
Step IV plan

• Continue beam based alignment.

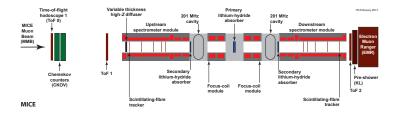
- Alignment with solenoids at full fields (4 T).
- Characterize diagnostics:
 - rejection of beam impurities;
 - resolution of phase space variables.
- Demonstrate beam optics:
 - linear and non-linear optics;
 - material budget in the beamline;
 - emittance change in the absence of an absorber.
- Study normalized emittance reduction under a variety of beam conditions.
- Characterize absorbers:

- Continue beam based alignment.
 - Alignment with solenoids at full fields (4 T).
- Characterize diagnostics:
 - rejection of beam impurities;
 - resolution of phase space variables.
- Demonstrate beam optics:
 - linear and non-linear optics;
 - material budget in the beamline;
 - emittance change in the absence of an absorber.
- Study normalized emittance reduction under a variety of beam conditions.
- Characterize absorbers:
 - energy loss;
 - multiple Coulomb scattering.

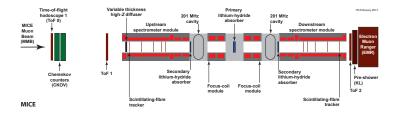
- Continue beam based alignment.
 - Alignment with solenoids at full fields (4 T).
- Characterize diagnostics:
 - rejection of beam impurities;
 - resolution of phase space variables.
- Demonstrate beam optics:
 - linear and non-linear optics;
 - material budget in the beamline;
 - emittance change in the absence of an absorber.
- Study normalized emittance reduction under a variety of beam conditions.
- Characterize absorbers:
 - energy loss;
 - multiple Coulomb scattering.



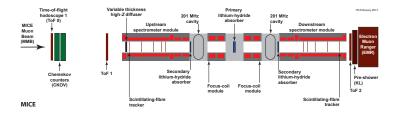
- Continue beam based alignment.
 - Alignment with solenoids at full fields (4 T).
- Characterize diagnostics:
 - rejection of beam impurities;
 - resolution of phase space variables.
- Demonstrate beam optics:
 - linear and non-linear optics;
 - material budget in the beamline;
 - emittance change in the absence of an absorber.
- Study normalized emittance reduction under a variety of beam conditions.
- Characterize absorbers:
 - energy loss
 - multiple Coulomb scattering.

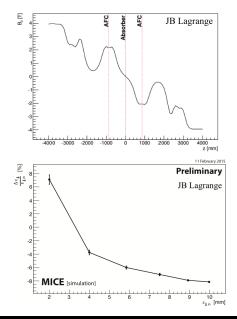

- Continue beam based alignment.
 - Alignment with solenoids at full fields (4 T).
- Characterize diagnostics:
 - rejection of beam impurities;
 - resolution of phase space variables.
- Demonstrate beam optics:
 - linear and non-linear optics;
 - material budget in the beamline;
 - emittance change in the absence of an absorber.
- Study normalized emittance reduction under a variety of beam conditions.
- Characterize absorbers:
 - energy loss;
 - multiple Coulomb scattering.

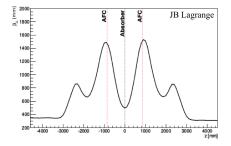
- Includes a full cooling half-cell.
- Includes RF cavities.
- Shows geometric emittance reduction including re-acceleration (sustainable cooling).



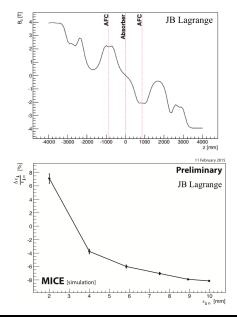
Includes a full cooling half-cell.

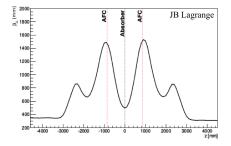

- Includes RF cavities.
- Shows geometric emittance reduction including re-acceleration (sustainable cooling).


- Includes a full cooling half-cell.
- Includes RF cavities.
- Shows geometric emittance reduction including re-acceleration (sustainable cooling).

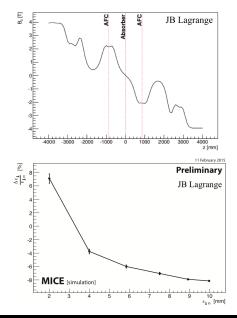


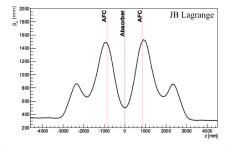
- Includes a full cooling half-cell.
- Includes RF cavities.
- Shows geometric emittance reduction including re-acceleration (sustainable cooling).

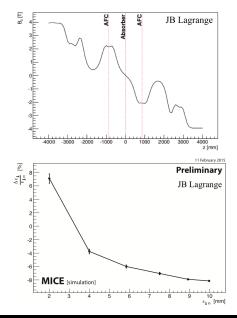


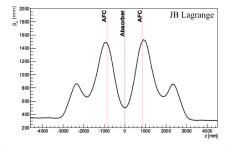


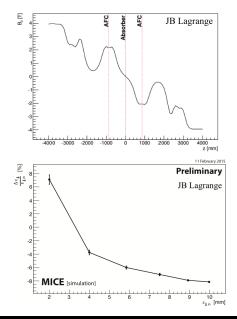
• Two Focus Coil modules.

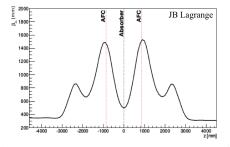

- Lithium hydride absorber and two secondary absorbers.
- Two RF cavities.
- Equilibrium emittance around 3 mm – to be measured.
- Acceptance around 10 mm to be measured.
 32/34



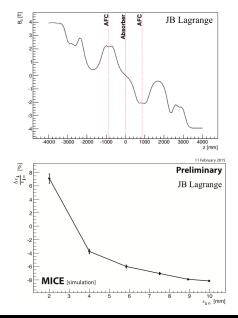

• Two Focus Coil modules.

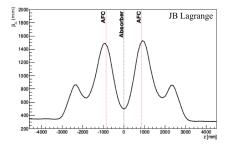

- Lithium hydride absorber and two secondary absorbers.
- Two RF cavities.
- Equilibrium emittance around 3 mm – to be measured.
- Acceptance around 10 mm to be measured.
 32/34


- Two Focus Coil modules.
- Lithium hydride absorber and two secondary absorbers.
- Two RF cavities.
- Equilibrium emittance around 3 mm to be measured.
- Acceptance around 10 mm to be measured.



- Two Focus Coil modules.
- Lithium hydride absorber and two secondary absorbers.
- Two RF cavities.
- Equilibrium emittance around 3 mm to be measured.
- Acceptance around 10 mm to be measured.


Demonstration of ionization cooling



- Two Focus Coil modules.
- Lithium hydride absorber and two secondary absorbers.
- Two RF cavities.
- Equilibrium emittance around 3 mm to be measured.
- Acceptance around 10 mm to be measured.

Demonstration of ionization cooling

- Two Focus Coil modules.
- Lithium hydride absorber and two secondary absorbers.
- Two RF cavities.
- Equilibrium emittance around 3 mm to be measured.
- Acceptance around 10 mm to be measured.

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
 MICE Step IV is in final stages of commissioning.
- MICE Demonstration of Ionization Cooling is in final design stage.

Summary

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
 MICE Step IV is in final stages of commissioning.
- MICE Demonstration of Ionization Cooling is in final design stage.

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
 MICE Step IV is in final stages of commissioning.
 - Will demonstrate normalized emittance reduction.
- MICE Demonstration of Ionization Cooling is in final design stage.

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
 MICE Step IV is in final stages of commissioning.
 - Will demonstrate normalized emittance reduction.
- MICE Demonstration of Ionization Cooling is in final design stage.

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
- MICE Step IV is in final stages of commissioning.
 - Will demonstrate normalized emittance reduction.
- MICE Demonstration of Ionization Cooling is in final design stage.
 - Will demonstrate emittance reduction and reacceleration (sustainable cooling).
 - Construction commences in summer 2016

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
- MICE Step IV is in final stages of commissioning.
 - Will demonstrate normalized emittance reduction.
- MICE Demonstration of Ionization Cooling is in final design stage.
 - Will demonstrate emittance reduction and reacceleration (sustainable cooling).
 - Construction commences in summer 2016.

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
- MICE Step IV is in final stages of commissioning.
 - Will demonstrate normalized emittance reduction.
- MICE Demonstration of Ionization Cooling is in final design stage.
 - Will demonstrate emittance reduction and reacceleration (sustainable cooling).
 - Construction commences in summer 2016.

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
- MICE Step IV is in final stages of commissioning.
 - Will demonstrate normalized emittance reduction.
- MICE Demonstration of Ionization Cooling is in final design stage.
 - Will demonstrate emittance reduction and reacceleration (sustainable cooling).
 - Construction commences in summer 2016.

- make definitive measurements of neutrino oscillations at the Neutrino Factory;
- make detailed measurements as a Higgs Factory;
- provide multi-TeV lepton-antilepton collisions at the Muon Collider.
- Ionization cooling is a critical enabling technique for muon accelerators.
- MICE Step IV is in final stages of commissioning.
 - Will demonstrate normalized emittance reduction.
- MICE Demonstration of Ionization Cooling is in final design stage.
 - Will demonstrate emittance reduction and reacceleration (sustainable cooling).
 - Construction commences in summer 2016.

Thank you!

