Muon lonization Cooling Experiment

Pavel Snopok
llinois Institute of Technology, Chicago, IL
and Fermilab, Batavia, IL

On behalf of MICE
November 11, 2015

ICE

V% i
wres et 4 Fermilab

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muons are ~200 times heavier than
electrons = can be accelerated in
circular channels:

P

Leptons

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muons are ~200 times heavier than
electrons = can be accelerated in
circular channels:

e synchrotron radiation is negligible,

1A

P

Leptons

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muons are ~200 times heavier than
electrons = can be accelerated in
circular channels:

e synchrotron radiation is negligible,
o CoM energy is not limited by radiative
effects,

1A

P

Leptons

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muons are ~200 times heavier than
electrons = can be accelerated in
circular channels:

e synchrotron radiation is negligible,

o CoM energy is not limited by radiative
effects,

e compact footprint,

1A

P

Leptons

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muons are =200 times heavier than
electrons = can be accelerated in
circular channels:

e synchrotron radiation is negligible,

o CoM energy is not limited by radiative
effects,

e compact footprint,

e Higgs production advantages.

1A

P

Leptons

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muons are =200 times heavier than
electrons = can be accelerated in
circular channels:

e synchrotron radiation is negligible,

o CoM energy is not limited by radiative
effects,

e compact footprint,

e Higgs production advantages.

@ Muons are elementary particles in the

framework of the Standard Model =
clean collisions, particle energy is utilized

|4 fully.

P

Leptons

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muons are =200 times heavier than
electrons = can be accelerated in
circular channels:

e synchrotron radiation is negligible,

o CoM energy is not limited by radiative
effects,

e compact footprint,

e Higgs production advantages.
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clean collisions, particle energy is utilized
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Muons are ~200 times heavier than
electrons = can be accelerated in
circular channels:

e synchrotron radiation is negligible,

o CoM energy is not limited by radiative

effects,
e compact footprint,
e Higgs production advantages.

Muons are elementary particles in the
framework of the Standard Model =
clean collisions, particle energy is utilized
fully.

Muons decay = neutrino beam via

wo = € vule, pt — et v,

Muons provide a unique tool for
addressing fundamental questions in
physics, or for exploring the properties of

materials.
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@ Muons are unstable, = = 2.2 us at rest (relativity helps: at 2 TeV
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Challenges

@ Muons are unstable, = = 2.2 us at rest (relativity helps: at 2 TeV
7 =0.044 s).
o rule of thumb: 1000 turns in the storage ring.

@ Challenge: collect muons, form into a beam, and either accelerate to
high energy or stop in a target.

@ Challenge: get enough muons to do the job, and concentrate within a
small target, or within a very bright beam.

@ Challenge: decay products heat magnets and other components, create
backgrounds in the detector, radiation damage is an issue.
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Why do we need muon accelerators?
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Why do we need muon accelerat

5 GeV Storage Ring
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(p &) Linac

Target &
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Buncher |Accumulator Concept developed by MAP as part ofits Muon Accelerator Staging Study (MASS)

@ Neutrino Factory is a precision microscope that will likely be needed to
fully probe the physics of the neutrino sector.

@ A multi-TeV muon collider may be the only cost-effective route to lepton
collider capabilities at energies > 5 TeV.

@ Muon accelerators offer unique potential for the future of high energy
physics research.

@ Bright muon sources can be used for other applications.
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technologies down the accelerator chain.
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@ Large part of the front end is common to NF and MC, common
technologies down the accelerator chain.

@ R&D for both could be staged, and each stage can be used as an R&D
platform for the subsequent one.
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Muon lonization Cooling:
Why Cool?
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@ Intense muon source: p — m — . Very large initial emittance.
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@ Intense muon source: p — m — . Very large initial emittance.
@ Need to capture as much as possible of the initial large emittance.

@ Large aperture acceleration systems are expensive = for cost-efficiency
need to reduce emittances prior to accelerating (“cool the beam”).
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@ Intense muon source: p — m — . Very large initial emittance.
@ Need to capture as much as possible of the initial large emittance.

@ Large aperture acceleration systems are expensive = for cost-efficiency
need to reduce emittances prior to accelerating (“cool the beam”).

@ Cooling requirements range from modest, predominantly transverse, to
very ambitious (O(108)) six-dimensional cooling for the ultimate MC.

@ Need to act fast since muons are unstable. The only feasible option is
ionization cooling.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



lonization cooling principle
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Xo.
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lonization cooling principle

O)
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where dey/ds is the rate of normalized emittance

dE/dx
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re-acceleration

L
b

change within the absorber; gc, E,,, and m,, are the
muon velocity, energy, and mass; 5, is the lattice
betatron function at the absorber; and Xj the radiation
length of the absorber material. Need low 3, , large
Xo.

@ Energy loss in material:

o all three components of the particle’s momentum
are affected.

@ Unavoidable multiple scattering:

@ can be minimized by choosing the material with
large Xo, hence, low Z.

@ Re-acceleration to restore energy lost in material
o only the longitudinal component of momentum is

affected.

Pavel Snopok, IIT/Fermilab

Muon lonization Cooling Experiment



Emittance exchange or “How to cool in 6D”
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Emittance exchange or “How to cool in 6D”

Incident Muon Beam

Dipole magnet
[Wedge absorber| [~

Ap/p

Emittance exchange principle:
@ pass dispersive beam through a wedge-shaped absorber;
@ particles with more momentum pass through more material;
@ beam energy spread is reduced;
@ beam transverse size is increased.
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Cooling channels
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Cooling channels for different applications
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@ Rectilinear cooling channel based on the concept by V. Balbekov
(Fermilab).
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@ Rectilinear cooling channel based on the concept by V. Balbekov

(Fermilab).

@ Simple geometry avoids engineering challenges of previously
considered schemes (ring/helix).
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Vacuum RF cooling channel (VCC)
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@ Rectilinear cooling channel based on the concept by V. Balbekov

(Fermilab).

@ Simple geometry avoids engineering challenges of previously
considered schemes (ring/helix).

@ Coils are tilted to generate dispersion at the wedge absorbers.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Vacuum RF cooling channel (VCC)

0.4 4LIH wedge 650 MHz coils 50

absorber coil cavities TOP VIEW 03 m\ cavities )7
LB N p—
- a a PS _or o
= %0.0 :‘ \4 305
SIDE VIEW EXE | [ fost
= = = = == = = — 02] 1+] =
E-m-m-m-m.m
—-— ] L] L = [ ] L} ] [} -0.4 T T 0
0.0 0.2 04 0.6 0.8
z (m)
@ Rectilinear cooling channel based on the concept by V. Balbekov

(Fermilab).

@ Simple geometry avoids engineering challenges of previously
considered schemes (ring/helix).

@ Coils are tilted to generate dispersion at the wedge absorbers.
@ Small beta function at the absorber to minimize multiple scattering.
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@ Rectilinear cooling channel based on the concept by V. Balbekov

(Fermilab).

@ Simple geometry avoids engineering challenges of previously
considered schemes (ring/helix).

@ Coils are tilted to generate dispersion at the wedge absorbers.
@ Small beta function at the absorber to minimize multiple scattering.
@ Channel is tapered:
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@ Rectilinear cooling channel based on the concept by V. Balbekov
(Fermilab).

@ Simple geometry avoids engineering challenges of previously
considered schemes (ring/helix).

@ Coils are tilted to generate dispersion at the wedge absorbers.
@ Small beta function at the absorber to minimize multiple scattering.
@ Channel is tapered:

o early stage: cells 275 cm long, 325 MHz RF, axial B ~3 T, beta function
~40 cm, coils far from axis/RF.
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Vacuum RF cooling channel (VCC)
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@ Rectilinear cooling channel based on the concept by V. Balbekov
(Fermilab).

@ Simple geometry avoids engineering challenges of previously
considered schemes (ring/helix).

@ Coils are tilted to generate dispersion at the wedge absorbers.
@ Small beta function at the absorber to minimize multiple scattering.
@ Channel is tapered:

o early stage: cells 275 cm long, 325 MHz RF, axial B ~3 T, beta function
~40 cm, coils far from axis/RF.
o late stage: cells 80 cm long, 650 MHz RF, axial B ~12 T, beta function
~3 cm, coils near axis/RF.
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Emittance reduction in VCC
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@ Emittance evolution plot (left): reaching design goals of 0.3 mm in
transverse and 1.5 mm in longitudinal emittance.
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@ Emittance evolution plot (left): reaching design goals of 0.3 mm in
transverse and 1.5 mm in longitudinal emittance.

@ Emittance evolution after bunch merge (right): good agreement with
theoretical predictions.
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@ Emittance evolution plot (left): reaching design goals of 0.3 mm in
transverse and 1.5 mm in longitudinal emittance.

@ Emittance evolution after bunch merge (right): good agreement with
theoretical predictions.

@ Detailed end-to-end simulations.
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@ Emittance evolution plot (left): reaching design goals of 0.3 mm in
transverse and 1.5 mm in longitudinal emittance.

@ Emittance evolution after bunch merge (right): good agreement with
theoretical predictions.

@ Detailed end-to-end simulations.
@ 6D emittance reduction by a factor of 105.
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@ Emittance evolution plot (left): reaching design goals of 0.3 mm in
transverse and 1.5 mm in longitudinal emittance.

@ Emittance evolution after bunch merge (right): good agreement with
theoretical predictions.
@ Detailed end-to-end simulations.
@ 6D emittance reduction by a factor of 105.
o Meets Higgs Factory emittance requirements.
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MICE: Muon lonization Cooling
Experiment
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MICE and its objectives

MICE — international experiment at Rutherford Appleton Laboratory in UK
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MICE — international experiment at Rutherford Appleton Laboratory in UK

@ Design, engineer and fabricate a section of cooling channel.
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@ Design, engineer and fabricate a section of cooling channel.

@ Place the cooling apparatus in a muon beam and measure its
performance in various modes of operation and beam conditions,
thereby investigating the limits and practicality of ionization cooling.
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MICE and its objectives

MICE — international experiment at Rutherford Appleton Laboratory in UK

@ Design, engineer and fabricate a section of cooling channel.

@ Place the cooling apparatus in a muon beam and measure its
performance in various modes of operation and beam conditions,
thereby investigating the limits and practicality of ionization cooling.

@ Measure a reduction in transverse beam size with a precision of 1%.
@ Develop and thoroughly test simulation and data analysis software.
@ Step IV: demonstrate transverse emittance reduction (2015-2016).
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MICE and its objectives

L
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MICE — international experiment at Rutherford Appleton Laboratory in UK

@ Design, engineer and fabricate a section of cooling channel.

@ Place the cooling apparatus in a muon beam and measure its
performance in various modes of operation and beam conditions,
thereby investigating the limits and practicality of ionization cooling.

@ Measure a reduction in transverse beam size with a precision of 1%.

@ Develop and thoroughly test simulation and data analysis software.

@ Step IV: demonstrate transverse emittance reduction (2015-20186).

@ Cooling demonstration configuration (shown in the figure): demonstrate
sustainable transverse cooling with re-acceleration (2017-2018).
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MICE and ISIS
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MICE beam line
CKOV = Cerenkov detector GVA1 = Scintillator counter
KL = KLOE Light Detector
LM = Luminosity Monitor

D = Dipole Magnet
DS = Decay Solenoid
Q = Quadrupole magnet

Target !
\\ _‘f / ’,'
- ’/ DSA = Decay Solenoid Area
! EMR = Electron Muon Ranger TOF = Time of Flight
!

ISIS
Q4-6 Q79 TOF2 KL

TOFO CKOVa,b TOF1 EMR

' GVA1

MICE beam line, MICE Step IV is placed between TOF1 and TOF2;
EMR, KL, TOF2 are moved in their final positions ‘
17/34

Muon lonization Cooling Experiment
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MICE configurations
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MICE Step IV on the floor
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MICE Step IV on the floor
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MICE online reconstruction of data

(PG image, 2 pixels) - Scaled (7%) - Mozilla Firefox (on miceonrecoz micenet.i.acuk) —
1 PNG mag...x | [ PNG Imag... x | L] (PNG Imag... x | 8] (PNGImas.. x D\DNG\mng x DDNG\mng x| O (NG mag ‘DlPNG\mng ‘DlPNG\mng ‘E[WEImag /0 (NG imag.. x | ] (NG mag... x | [ (PNGmag... x | 4

+onwe @

@ MICE has multiple detectors for particle localization and identification:
Time-of-Flight, Cherenkov, sci-fi trackers, KL calorimeter, Electron Muon

R :
anger.
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MICE highlights and challenges

@ High resolution particle-by-particle diagnostics:
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beam measurements;
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e Focus Coils (FC);
e magnetically coupled - mutually induced quench.
@ High gradient RF cavities:
o two 10.3 MV/m, 201.25 MHz RF cavities;
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MICE highlights and challenges

@ High resolution particle-by-particle diagnostics:
e measure individual particle’s position and momentum to get fully correlated
beam measurements;
o reject beam impurities.
@ Large aperture superconducting magnets:
o Upstream and Downstream Spectrometer Solenoids (SSU and SSD);
e Focus Coils (FC);
e magnetically coupled - mutually induced quench.
@ High gradient RF cavities:
o two 10.3 MV/m, 201.25 MHz RF cavities;
e 4 MW peak RF power;
o particle-by-particle phase measurement.
@ Liquid and solid low-Z absorbers:

o 21 liters liquid hydrogen in 150 micron thick containment vessel;
@ 65 mm thick lithium hydride disk.
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@ Focus Coil on the beamline and cooling down.
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Superconducting magnets

@ Focus Coil on the beamline and cooling down.
@ SSU fully trained to operating field; awaiting soak test.
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@ SSU fully trained to operating field; awaiting soak test.
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Superconducting magnets

@ Focus Coil on the beamline and cooling down.

@ SSU fully trained to operating field; awaiting soak test.
@ SSD retraining in-situ in progress.

@ Failure of LTS lead on MatchCoil1 in SSD:
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Superconducting magnets

@ Focus Coil on the beamline and cooling down.
@ SSU fully trained to operating field; awaiting soak test.
@ SSD retraining in-situ in progress.
@ Failure of LTS lead on MatchCoil1 in SSD:
o key physics measurements still available.
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Superconducting magnets

@ Focus Coil on the beamline and cooling down.
@ SSU fully trained to operating field; awaiting soak test.
@ SSD retraining in-situ in progress.
@ Failure of LTS lead on MatchCoil1 in SSD:
o key physics measurements still available.
e repair plan in preparation after Step IV.
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@ 350 mm thick liquid hydrogen absorber:
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@ 350 mm thick liquid hydrogen absorber:
o 21 liters;
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@ 350 mm thick liquid hydrogen absorber:

o 21 liters;
o enclosed by four 150 micron curved Al windows,
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@ 350 mm thick liquid hydrogen absorber:

o 21 liters;
o enclosed by four 150 micron curved Al windows,
@ installed.
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@ 350 mm thick liquid hydrogen absorber:

o 21 liters;
o enclosed by four 150 micron curved Al windows,
@ installed.

@ 65 mm lithium hydride absorber:
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@ 350 mm thick liquid hydrogen absorber:

o 21 liters;
o enclosed by four 150 micron curved Al windows,
@ installed.

@ 65 mm lithium hydride absorber:
o will be installed, replacing LH2 absorber, early in 2016 for Step IV.
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@ Two normal conducting RF cavities.
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@ Two normal conducting RF cavities.
@ 201.25 MHz, 10.3 MV/m.
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@ 201.25 MHz, 10.3 MV/m.
@ Beryllium windows provide enhanced on-axis fields.
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@ Two normal conducting RF cavities.

@ 201.25 MHz, 10.3 MV/m.

@ Beryllium windows provide enhanced on-axis fields.

@ Successful operation in magnetic field in 2015 at MuCool Test Area.
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@ Two normal conducting RF cavities.

@ 201.25 MHz, 10.3 MV/m.

@ Beryllium windows provide enhanced on-axis fields.

@ Successful operation in magnetic field in 2015 at MuCool Test Area.
@ Installation in 2016—2017, following Step IV.
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@ Three scintillating TOF stations:

o time resolution ~ 50 ps;

@ commissioned in 2009.
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@ Three scintillating TOF stations:
o time resolution ~ 50 ps;

@ commissioned in 2009.
@ Two Scintillating Fiber Trackers:

@ position resolution ~ 0.7 mm;
o simulated momentum resolution ~ 2 MeV/c.
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@ Three scintillating TOF stations:
o time resolution ~ 50 ps;

[ LJlLL T. Mohayai

@ commissioned in 2009.
@ Two Scintillating Fiber Trackers:

@ position resolution ~ 0.7 mm;
o simulated momentum resolution ~ 2 MeV/c.

@ Threshold Cherenkov counter.
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@ Three scintillating TOF stations:

o time resolution ~ 50 ps;
e commissioned in 2009.

@ Two Scintillating Fiber Trackers:
@ position resolution ~ 0.7 mm;

of- | e simulated momentum resolution ~ 2 MeV/c.
al , @ Threshold Cherenkov counter.
3 | T. Mohayai

e e @ KL pre-shower detector.
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@ Three scintillating TOF stations:

o time resolution ~ 50 ps;
e commissioned in 2009.

@ Two Scintillating Fiber Trackers:
@ position resolution ~ 0.7 mm;

of- | e simulated momentum resolution ~ 2 MeV/c.
al , @ Threshold Cherenkov counter.
3 | T. Mohayai
e e @ KL pre-shower detector.
@ Electron-muon ranger.
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f @ PID detectors commissioned in
3 2010-2013.
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f @ PID detectors commissioned in
13 2010-2013.

—_— @ Trackers commissioned in June 2015,
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f @ PID detectors commissioned in
3 2010-2013.

e @ Trackers commissioned in June 2015,
° e await final push to improve efficiency.
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Beam-based detector alignment

Residuals in Position Residuals in Angle
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Beam-based detector alignment

Residuals in Position Residuals in Angle
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@ Beam-based alignment of detectors




Beam-based detector alignment
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@ Beam-based alignment of detectors
o Project measured tracks between detectors with magnets off.
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Beam-based detector alignment
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@ Beam-based alignment of detectors

o Project measured tracks between detectors with magnets off.
e Compare position of tracks with expected position.
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Beam-based detector alignment
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@ Beam-based alignment of detectors

o Project measured tracks between detectors with magnets off.
e Compare position of tracks with expected position.

@ Spread in positions due to scattering in windows.
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Beam-based detector alignment

Residuals in Position Residuals in Angle
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@ Beam-based alignment of detectors

o Project measured tracks between detectors with magnets off.
e Compare position of tracks with expected position.

@ Spread in positions due to scattering in windows.
o Alignments at (expected) mm/mrad level.
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Beam-based detector alignment
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@ Beam-based alignment of detectors

o Project measured tracks between detectors with magnets off.
e Compare position of tracks with expected position.

@ Spread in positions due to scattering in windows.
o Alignments at (expected) mm/mrad level.
o Final numbers await error analysis.
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Beam-based magnet alignment
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Beam-based magnet alignment
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@ Beam-based alignment of solenoid tilt to tracker:
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Beam-based magnet alignment
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@ Beam-based alignment of solenoid tilt to tracker:
e examine alignment of helix formed by each particle;

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Beam-based magnet alignment
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@ Beam-based alignment of solenoid tilt to tracker:

e examine alignment of helix formed by each particle;
o find “best fit tilt";

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Beam-based magnet alignment

: : J I # |
M o, N,

i ‘nM, J"#” { ﬁlhw X lﬂ b HJ'J‘]”‘ \W‘ Mm \r!mL W il h‘ H "’J‘é“a )

005
nsiueted o, ad] Roconsiieied 8, (ad]”

@ Beam-based alignment of solenoid tilt to tracker:

e examine alignment of helix formed by each particle;
o find “best fit tilt”;
o systematic error analysis underway.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Beam-based magnet alignment
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@ Beam-based alignment of solenoid tilt to tracker:

e examine alignment of helix formed by each particle;
o find “best fit tilt”;
o systematic error analysis underway.

@ Beam-based alignment of trackers to magnets:

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Beam-based magnet alignment
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@ Beam-based alignment of solenoid tilt to tracker:
e examine alignment of helix formed by each particle;
o find “best fit tilt”;
o systematic error analysis underway.
@ Beam-based alignment of trackers to magnets:
o project particles from tracker to tracker, with magnets on;

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Beam-based magnet alignment
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@ Beam-based alignment of solenoid tilt to tracker:
e examine alignment of helix formed by each particle;
o find “best fit tilt”;
o systematic error analysis underway.

@ Beam-based alignment of trackers to magnets:

o project particles from tracker to tracker, with magnets on;
o calculate transfer matrix, compare with expected transfer matrix.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Step IV plan

@ Continue beam based alignment.
e Alignment with solenoids at full fields (4 T).

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Step IV plan

@ Continue beam based alignment.
e Alignment with solenoids at full fields (4 T).
@ Characterize diagnostics:

o rejection of beam impurities;
o resolution of phase space variables.
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Step IV plan

@ Continue beam based alignment.

e Alignment with solenoids at full fields (4 T).
@ Characterize diagnostics:

o rejection of beam impurities;

e resolution of phase space variables.
@ Demonstrate beam optics:

o linear and non-linear optics;
o material budget in the beamline;
e emittance change in the absence of an absorber.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Step IV plan

@ Continue beam based alignment.
e Alignment with solenoids at full fields (4 T).
@ Characterize diagnostics:
o rejection of beam impurities;
o resolution of phase space variables.
@ Demonstrate beam optics:
o linear and non-linear optics;
o material budget in the beamline;
e emittance change in the absence of an absorber.
@ Study normalized emittance reduction under a variety of beam
conditions.
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Step IV plan

@ Continue beam based alignment.
e Alignment with solenoids at full fields (4 T).
@ Characterize diagnostics:

o rejection of beam impurities;
o resolution of phase space variables.

@ Demonstrate beam optics:

o linear and non-linear optics;
o material budget in the beamline;
e emittance change in the absence of an absorber.

@ Study normalized emittance reduction under a variety of beam
conditions.
@ Characterize absorbers:

o energy loss;
o multiple Coulomb scattering.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Demonstration of ionization cooling
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Demonstration of ionization cooling

Time-of-flight Variable thickness Primary pr—
hodoscope 1 high-2 diffuser 201 Mz lithium-hydride 201 MHz
ToF 0 it absorber it
MICE (ToF 0) Upstream cavity fcavity Downstream
Muon spectrometer module ¢ ¢ spectrometer module
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MICE tracker

@ Includes a full cooling half-cell.
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nstration of ionization cooling

Time-of-flight Variable thickness Primary pr—
hodoscope 1 high-2 diffuser 201 Mz lithium-hydride 201 MHz
ToF 0 it absorber it
MICE (ToF 0) Upstream cavity fcavity Downstream
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=il
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absorber bsorbe
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Scintillating-fibre Scintillating-fibre
MICE tracker

@ Includes a full cooling half-cell.
@ Includes RF cavities.
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Demonstration of ionization cooling

Time-of-flight Variable thickness Primary Februs
hodoscope 1 high-Z diffuser 201 MHz lithium-hydride 201 MHz
(ToF 0) ity absorber ity
wee 000 Upstream cavity cavity Downstream
Muon spectrometer module ¢ ¢ spectrometer module
Beam
o .
— I N
? ToF 1 ~ Secondary
Chorenkov lithium-hydride lithium-hydride Pre-shower
absorber bsorbe
(cKov) Focus-coil  Focus-coil absorber e
module module ToF 2

Scintillating-fibre Scintillating-fibre

MICE tracker

@ Includes a full cooling half-cell.
@ Includes RF cavities.

@ Shows geometric emittance reduction including re-acceleration
(sustainable cooling).

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



onstration of ionization cooling
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onstration of ionization cooling
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@ Two Focus Coil modules.
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Demonstration of ionization cooling
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Demonstration of ionization cooling
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@ Two Focus Coil modules.

@ Lithium hydride absorber and two
secondary absorbers.

@ Two RF cavities.
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Demonstration of ionization cooling
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@ Two Focus Coil modules.

@ Lithium hydride absorber and two
secondary absorbers.

@ Two RF cavities.

@ Equilibrium emittance around
3 mm — to be measured.
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Demonstration of ionization cooling
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@ Two Focus Coil modules.

@ Lithium hydride absorber and two
secondary absorbers.

@ Two RF cavities.

@ Equilibrium emittance around
3 mm — to be measured.

@ Acceptance around 10 mm —to
be measured. 52734
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@ Muon accelerators have the potential to:
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@ Muon accelerators have the potential to:

o make definitive measurements of neutrino oscillations at the Neutrino
Factory;
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@ Muon accelerators have the potential to:

o make definitive measurements of neutrino oscillations at the Neutrino
Factory;
o make detailed measurements as a Higgs Factory;
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@ Muon accelerators have the potential to:
e make definitive measurements of neutrino oscillations at the Neutrino
Factory;
o make detailed measurements as a Higgs Factory;
e provide multi-TeV lepton-antilepton collisions at the Muon Collider.
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@ Muon accelerators have the potential to:
o make definitive measurements of neutrino oscillations at the Neutrino
Factory;
o make detailed measurements as a Higgs Factory;
e provide multi-TeV lepton-antilepton collisions at the Muon Collider.

@ lonization cooling is a critical enabling technique for muon accelerators.
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@ Muon accelerators have the potential to:

e make definitive measurements of neutrino oscillations at the Neutrino

Factory;

o make detailed measurements as a Higgs Factory;

e provide multi-TeV lepton-antilepton collisions at the Muon Collider.
@ lonization cooling is a critical enabling technique for muon accelerators.
@ MICE Step IV is in final stages of commissioning.

o Will demonstrate normalized emittance reduction.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



@ Muon accelerators have the potential to:

o make definitive measurements of neutrino oscillations at the Neutrino
Factory;

o make detailed measurements as a Higgs Factory;

e provide multi-TeV lepton-antilepton collisions at the Muon Collider.

@ lonization cooling is a critical enabling technique for muon accelerators.
@ MICE Step IV is in final stages of commissioning.

o Will demonstrate normalized emittance reduction.
@ MICE Demonstration of lonization Cooling is in final design stage.
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@ Muon accelerators have the potential to:
e make definitive measurements of neutrino oscillations at the Neutrino
Factory;
o make detailed measurements as a Higgs Factory;
e provide multi-TeV lepton-antilepton collisions at the Muon Collider.
@ lonization cooling is a critical enabling technique for muon accelerators.
@ MICE Step IV is in final stages of commissioning.
o Will demonstrate normalized emittance reduction.
@ MICE Demonstration of lonization Cooling is in final design stage.

o Will demonstrate emittance reduction and reacceleration (sustainable
cooling).
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@ Muon accelerators have the potential to:
e make definitive measurements of neutrino oscillations at the Neutrino
Factory;
o make detailed measurements as a Higgs Factory;
e provide multi-TeV lepton-antilepton collisions at the Muon Collider.
@ lonization cooling is a critical enabling technique for muon accelerators.
@ MICE Step IV is in final stages of commissioning.
o Will demonstrate normalized emittance reduction.
@ MICE Demonstration of lonization Cooling is in final design stage.

o Will demonstrate emittance reduction and reacceleration (sustainable
cooling).
@ Construction commences in summer 2016.

Pavel Snopok, IIT/Fermilab Muon lonization Cooling Experiment



Thank you!

Pavel Snopok, IIT/Fermilab lonization Cooling Experim



