
🛟 Fermilab

Superconducting RF Development at Fermilab

Associate Scientist, Technical Division PASI Workshop 13 November 2015

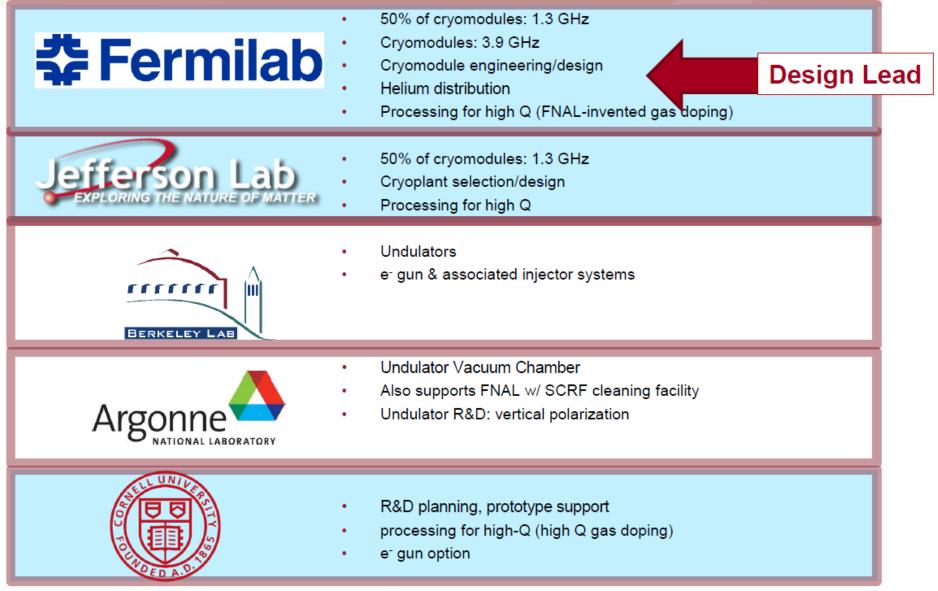
Fermilab


- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

Fermilab

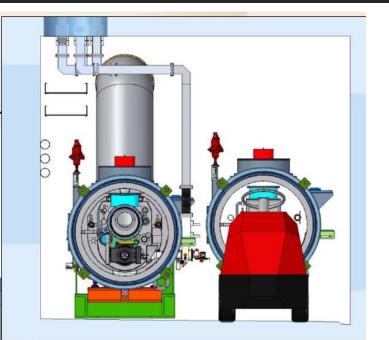
- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

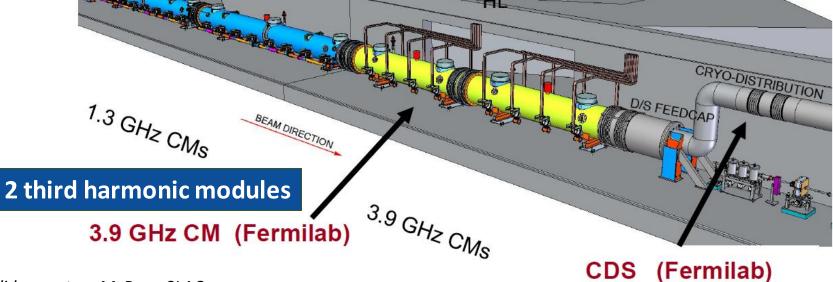
Fermilab LCLS-II Hybrid FEL at SLAC


- LCLS II: 0.2 5 KeV, 1 MHz free electron laser
- Driven by 4 GeV 1.3 GHz CW SRF linac

‡ Fermilab

LCLS II Partner Labs


Slide courtesy M. Ross, SLAC

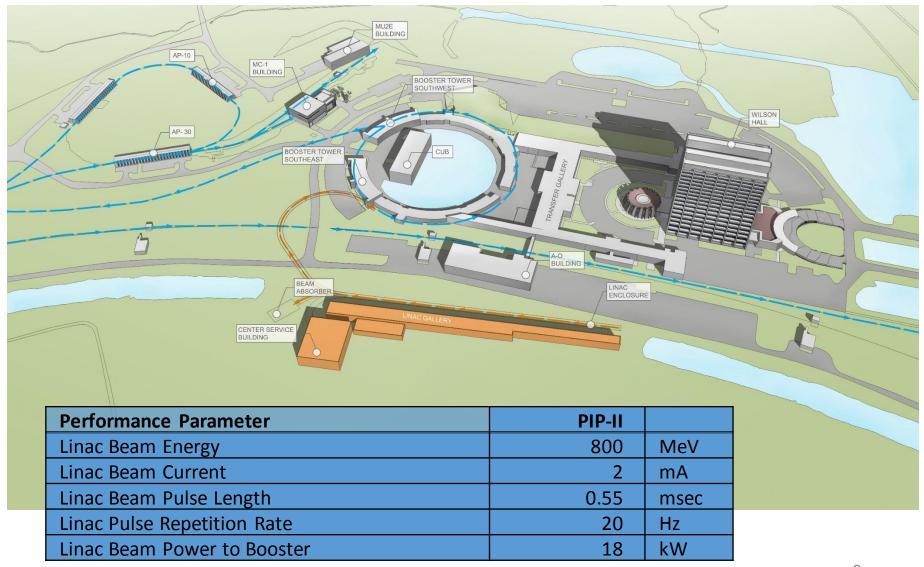

#Fermilab LCLS II SRF Linac

Tunnel Layout and Crosssection

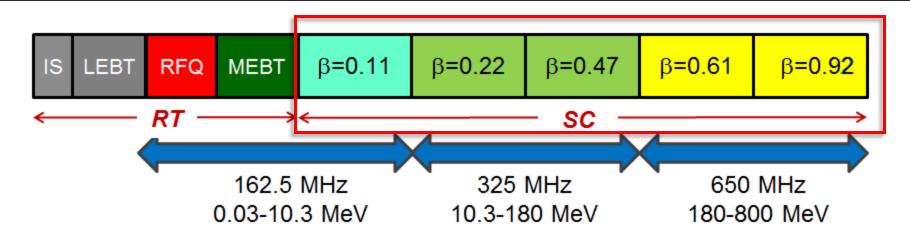
35 modules, 17 from Fermilab

1.3 GHz Modules (Fermilab/JLab)

Slide courtesy M. Ross, SLAC


Given Strategy Fermilab PIP II Mission and Strategy

□ Proton Improvement Plan II (PIP-II):


The PIP-II goal is to support long-term physics research goals by providing increased beam power to neutrino experiments, while providing a platform for the future.

- Design Criteria
 - Deliver >1 MW of proton beam power from the Main Injector over the energy range 60 – 120 GeV, at the start of LBNF operations
 - Support the current 8 GeV program including Mu2e, g 2, and short-baseline neutrinos
 - Provide an upgrade path for Mu2e
 - Provide a platform for extension of beam power to LBNF to >2 MW
 - Provide a platform for extension of capability to high duty factor/higher beam power operations

Fermilab PIP II SC Linac Requirements

Fermilab PIP II Linac Reference Design

Section	Freq	Energy (MeV)	Cav/mag/CM	Туре
RFQ	162.5	0.03-2.1		
HWR (β_{opt} =0.11)	162.5	2.1-10.3	8/8/1	HWR, solenoid
SSR1 (β_{opt} =0.22)	325	10.3-35	16/8/ 2	SSR, solenoid
SSR2 (β_{opt} =0.47)	325	35-185	35/21/7	SSR, solenoid
LB 650 (β _g =0.61)	650	185-500	33/22/11	5-cell elliptical, doublet*
HB 650 (β _g =0.92)	650	500-800	24/8/4	5-cell elliptical, doublet*

*Warm doublets external to cryomodules

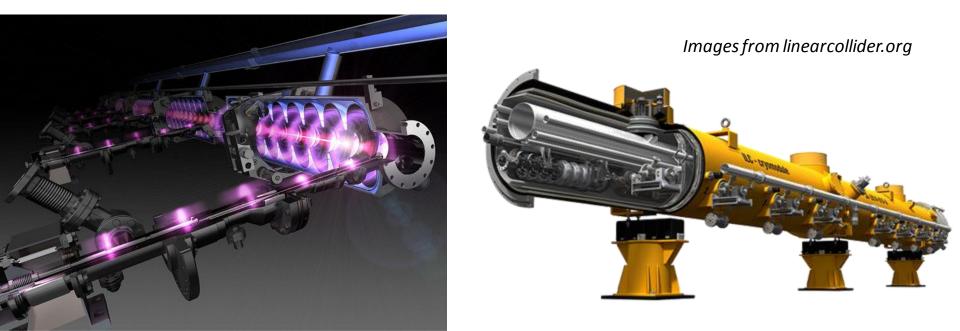
All components CW-capable

9 spoke cavity cryomodules, 15 elliptical cavity cryomodules

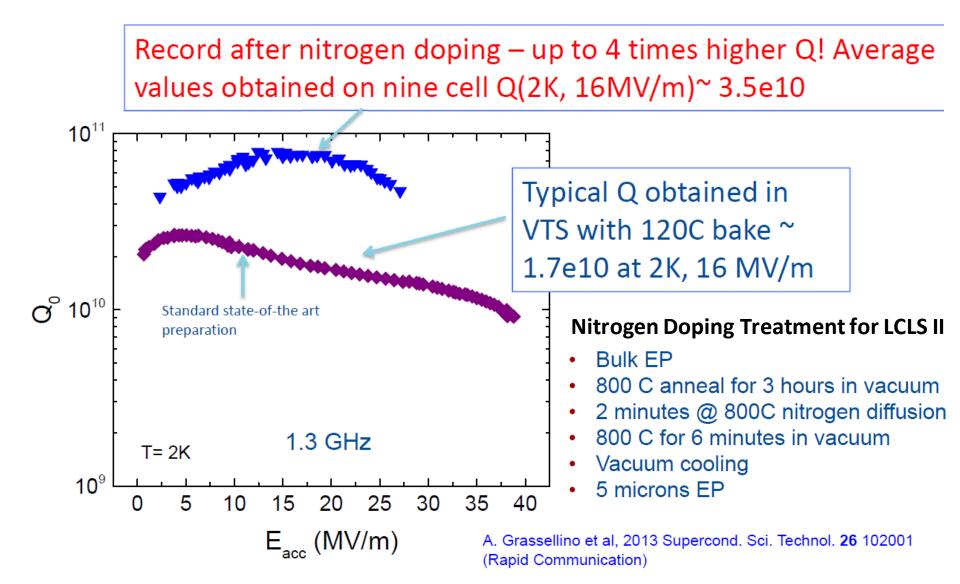
‡ Fermilab

PIP II SRF Overview

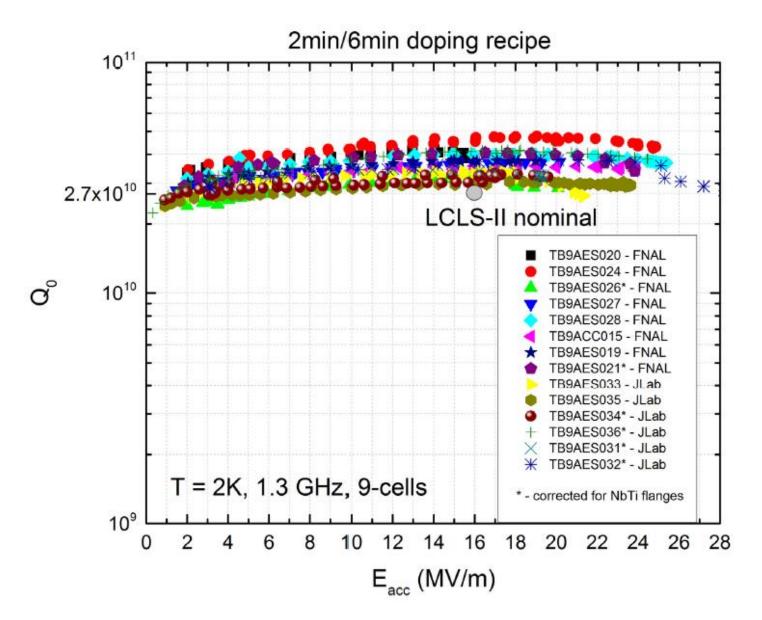
Name	β	Freq (MHz)	Type of cavity	B _{peak} (mT)	E _{peak} (MV/m)	E _{acc} (MV/m)	∆E (MeV)
HWR	0.11	162.5	Half wave resonator	48.3	44.9	9.7	2.0
SSR1	0.22	325	Single-spoke resonator	58.1	38.4	10	2.05
SSR2	0.47	325	Single-spoke resonator	64.5	40	11.4	5.0
LB650	0.61	650	Elliptic 5-cell	72	38.5	15.9	11.9
HB650	0.92	650	Elliptic 5-cell	72	38.3	17.8	19.9


• Operating gradients ($E_{peak} \approx 40 \text{ MV/m} - \text{field emission}; B_{peak} \approx 70 \text{ mT}$);

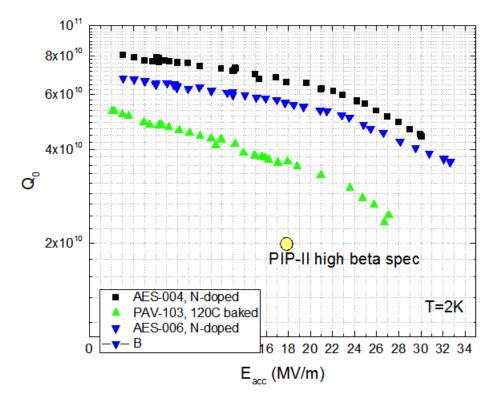
Fermilab


- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

#Fermilab LCLS II SRF Linac


- Linac based on 1.3 GHz SRF cryomodule design: TeSLA / ILC / European XFEL
- 8 cavities per cryomodule at 2 K
- Gradient specification: 16 MV/m
- Q₀ specification: 2.7x10¹⁰

Fermilab LCLS II High Q₀ R&D


Fermilab LCLS II High Q₀ R&D

Fermilab

PIP II High Q₀ R&D

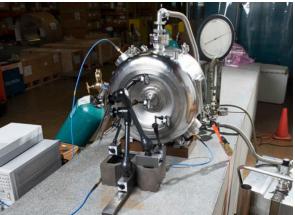
- Results highlights 120C bake versus N doping Q~ 7e10 at 2K, 17 MV/m – world record at this frequency!
- Applying N doping to 650 MHz (beta=0.9) leads to double Q compared to 120C bake (standard surface treatment ILC/XFEL)

#Fermilab PIP II Technical Challenges

- Low beam loading → narrow bandwidth;
 - Pulsed regime \rightarrow Lorentz Force Detuning (LFD);
 - CW regime \rightarrow microphonics;

Section	Freq (MHz)	Max detuning (peak, Hz)	LFD at operating gradient (Hz)	Minimal Half Bandwidth (Hz)	Max Required Power (kW)
HWR	162.5	20	-122	33	6.5
SSR1	325	20	-440	43	6.1
SSR2	325	20	-	28	17.0
LB650	650	20	-192	29	38.0
HB650	650	20	-136	29	64.0

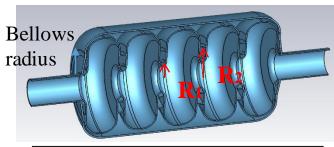
Fermilab PIP II SSR1 Microphonics

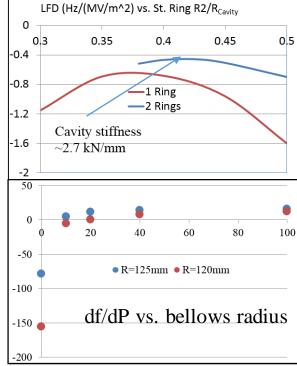

The jacketed SSR1 cavities were designed to have very low sensitivity to helium pressure fluctuations (microphonics). We physically coupled the Nb cavity and the helium vessel such that we obtain a combination of cavity walls deformations $(x_1 + x_2)$ and $(x_3 + x_4)$ giving a df/dp = 0.

Self-compensated system --> Passive compensation No active control to mitigate the pressure fluctuations

PIP-II requirements: -25 ≤ df/dp ≤ 25 Hz/Torr

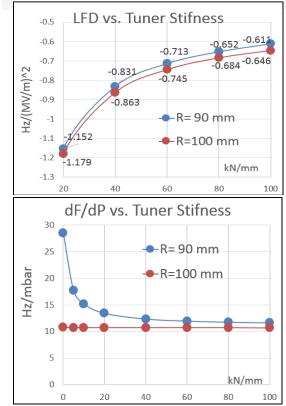
	df/dp [Hz/Torr]	S106	S107	S108	S109	S110	S111	S112	S113	S114	
T	Bare cavity (with transition ring)	-564	-561	-553.5	-555.1	-568.8	-525.8	-524.6	-544.7	-557.2	
Measured	With He Vessel (without Tuner)	8	8	-1.2	5.4	7.9	2.7	9.0	6.3	10	
<	Fully integrated		4								

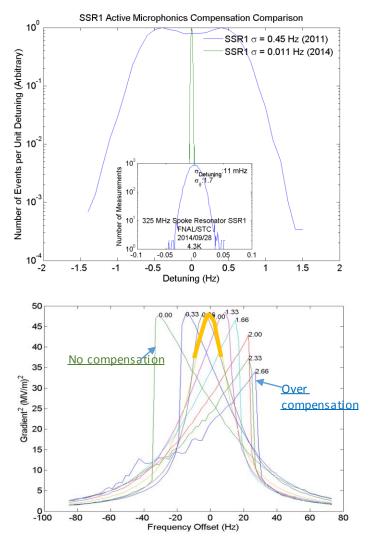

 $A_1(x_1 + x_2) + A_2(x_3 + x_4) + (q_1 + q_2) = 0$



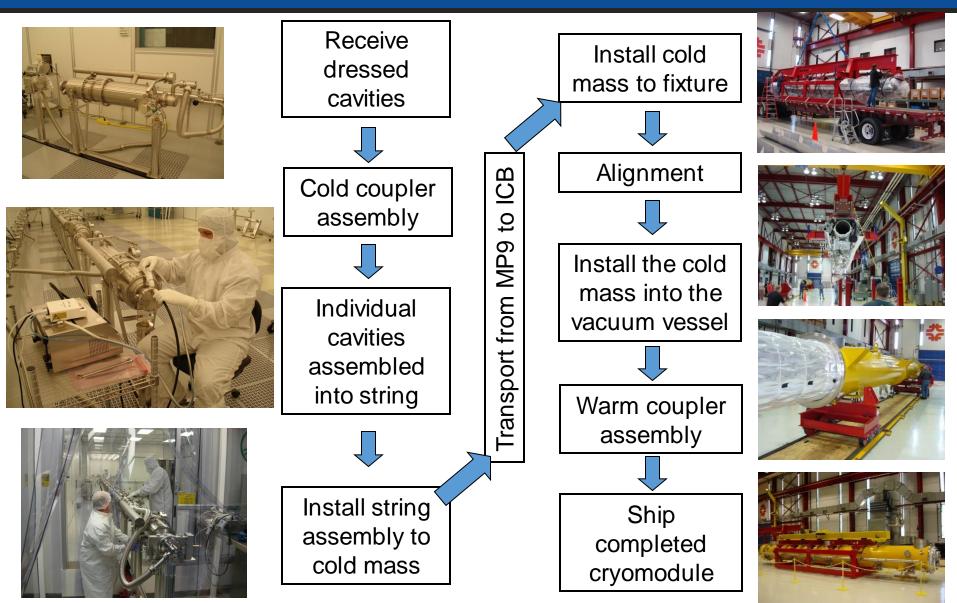
* Not measured yet (best guess)

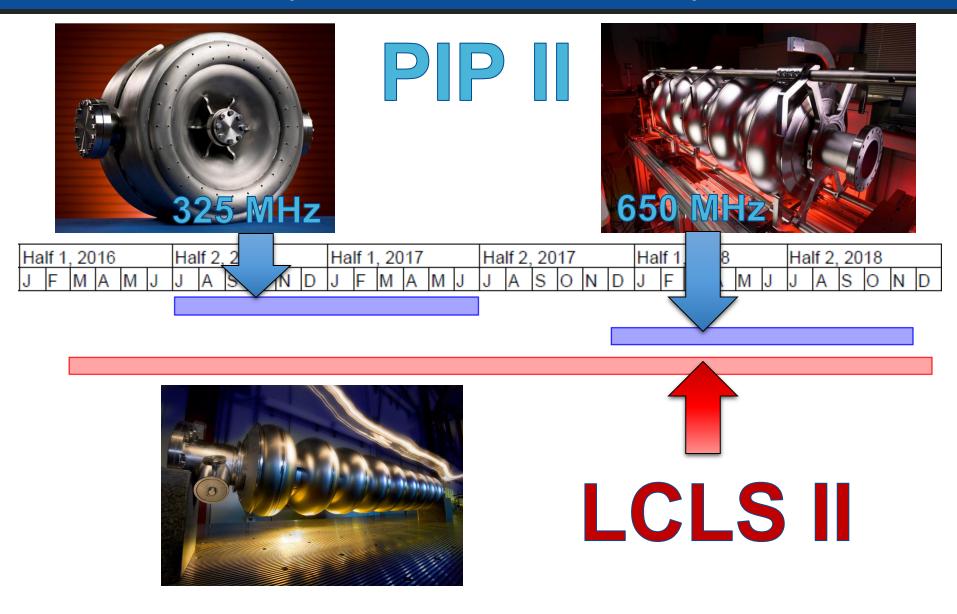
Fermilab PIP II 650 LFD and df/dp


Low-Beta Cavity


High-Beta Cavity

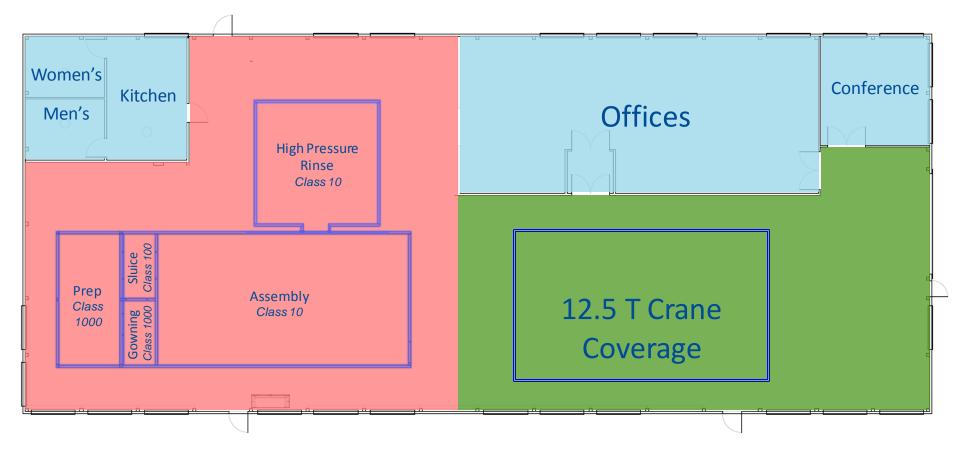
#Fermilab PIP II Resonance Control R&D


- Piezo feedback has successfully stabilized the resonance with high precision in CW to negligible levels (11 mHz RMS)
- Ponderomotive instability has been successfully mitigated using piezo feedforward tied to the square of the gradient during both CW and pulsed operation
- Adaptive feedforward has successfully suppressed detuning from deterministic sources of detuning
- Techniques for fully characterizing the tuner-cavity-waveguide system automatically have been developed and used successfully

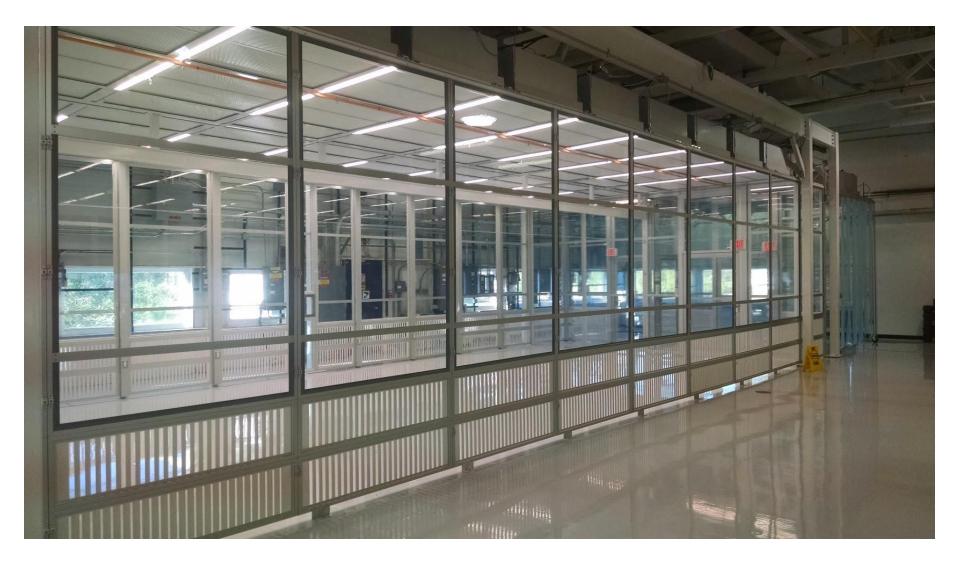

Fermilab

- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

Fermilab LCLS II Cryomodule Assembly

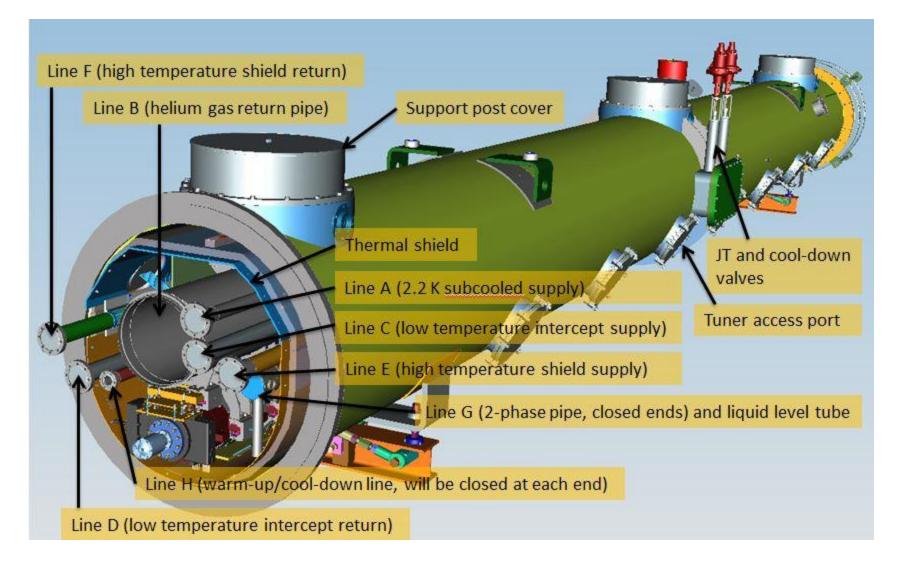


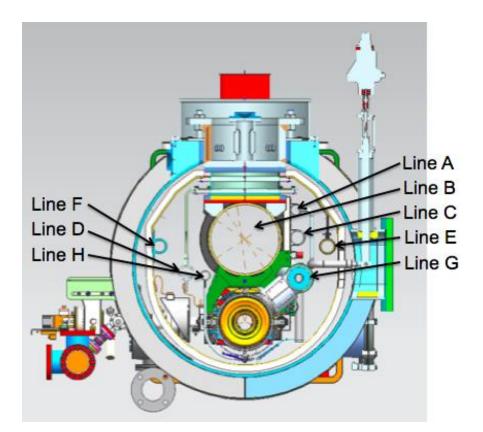
Fermilab Cryomodule Assembly Conflict



Fermilab PIP II pCM Assembly: Lab 2

10 ft

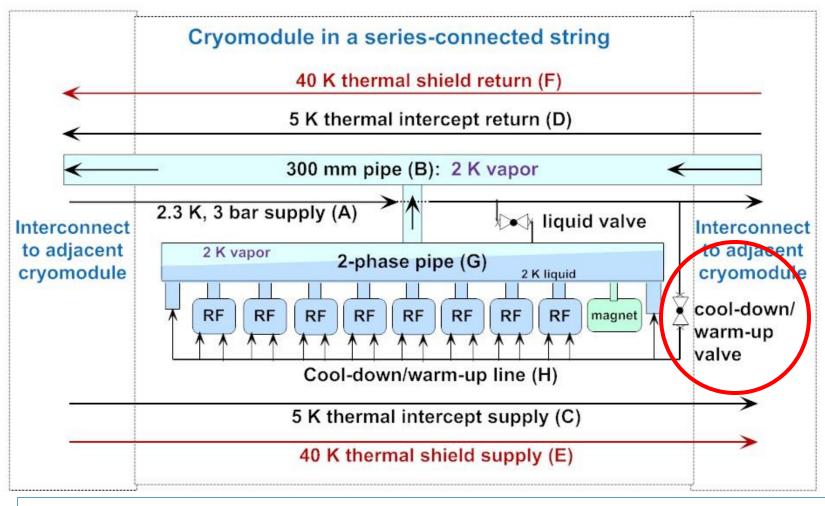

Fermilab PIP II pCM Assembly: Lab 2


Fermilab

- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

#Fermilab LCLS II Cryomodule

Fermilab LCLS II CM Cryogenic Circuits

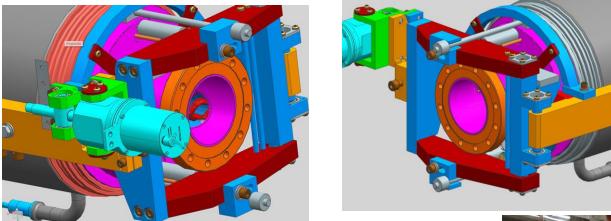

Circuit (Line)

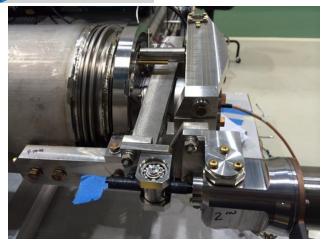
- A. 2.2 K subcooled supply
- B. Gas return pipe (GRP)
- C. Low temperature intercept supply
- D. Low temperature intercept return
- E. High temperature shield supply
- F. High temperature shield return
- G. 2-phase pipe
- H. Warm-up/cool-down line

Operating Parameters	А	В	С	D	Е	F	G	Н
Pressure, [bar]	3	0.031	3	2.8	3.7	2.7	0.031	3
Temperature, K	2.4	2.0	4.5	5.5	35	55	2.0	2.0

Slide courtesy T. Peterson, Fermilab

#Fermilab LCLS II CM Flow Scheme

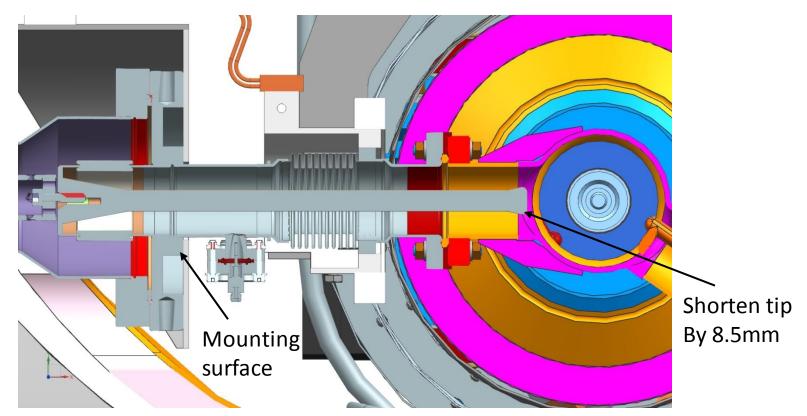



"Fast" cool-down is a new requirement not yet reflected in formal documents

‡Fermilab

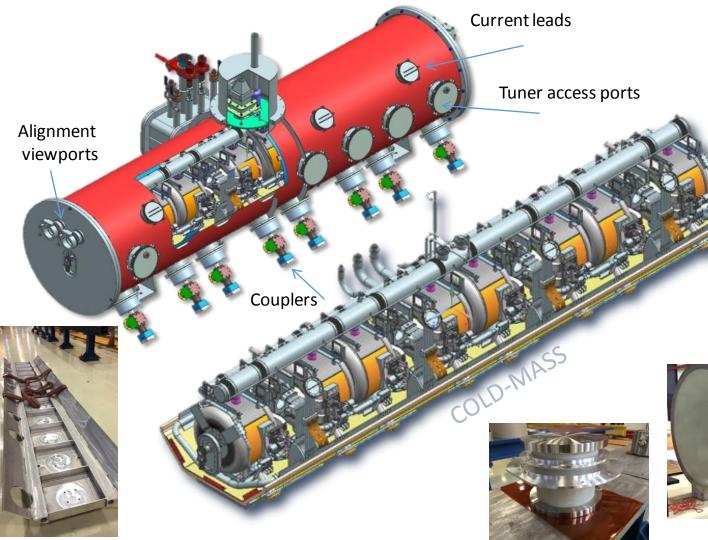
LCLS II Tuner

design included several features specific to requirements that electromechanical actuator and piezo-elements replaceable through special designated port



Slide courtesy Y. Pischalnikov, Fermilab

Fermilab LCLS II Fundamental Power Coupler


- Modifications/Design changes (from TTF3)
 - Cold end

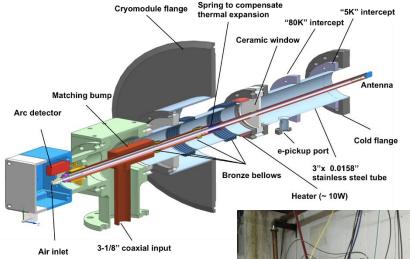
Slide courtesy K. Primo, Fermilab

‡ Fermilab

SSR1 Cryomodule

5.2 m long 8 Cav + 4 Magnets Bottom-supported elements with warm strongback

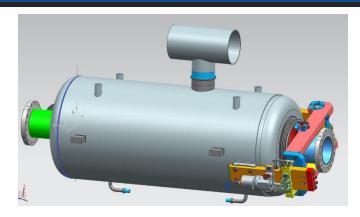
Fermilab PIP II SSR1 Ancillaries: Prototyping



Parameter	Req.	
Coarse range	> 135 kHz	SSR1 Tuner
Fine range	> 1 kHz	
Coarse resol.	< 20 Hz	Construction and the second

Cartridge with motor and piezos

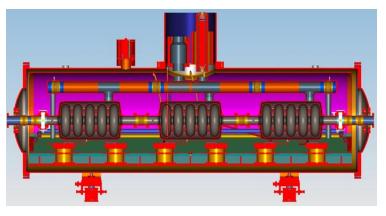
325 MHz coupler anatomy



Input coupler:

Coupler test stand

#Fermilab PIP II 650 MHz Dressed Cavity

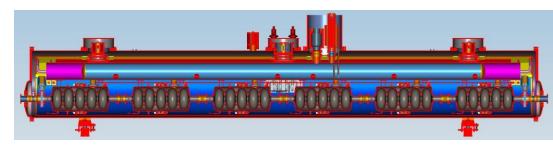

- LB650 dressed cavity optimization is in progress
- HB650 dressed cavity optimization is done
 - Stiffening ring position R=100 mm and bellow radius R=125 mm accepted
 - LFD Coefficients for tuner stiffness 80 kN/mm -0.69 Hz/(MV/m)^2
 - dF/dP for tuner stiffness 20 80 kN/mm is less than 12 Hz/mbar.
 - Cavity stiffness is ~ 3.0 kN/mm and tuning sensitivity is ~ 160 kHz/mm.
 - Modal analysis has been done. Lowest longitudinal mode ~ 100 Hz with 20-80 kHz/mm tuner stiffness.
 - Stresses analysis has been done for internal pressure of 2 bar + gravity load at RT
 - Stresses in cavity are acceptable
 - Stresses in bellow are allowable for 5 mm pitch

Slide courtesy T. Khabiboulline, Fermilab

Fermilab PIP II 650 MHz Cryomodule

Low-Beta Cryomodule

- 11 total cryomodules
- 3 cavities each (650 MHz, 5-cell)
- 33 total cavities
- No magnets internal to the cryomodule
- Approximate length = 3.9 m



Concept 1 (room temperature strongback)

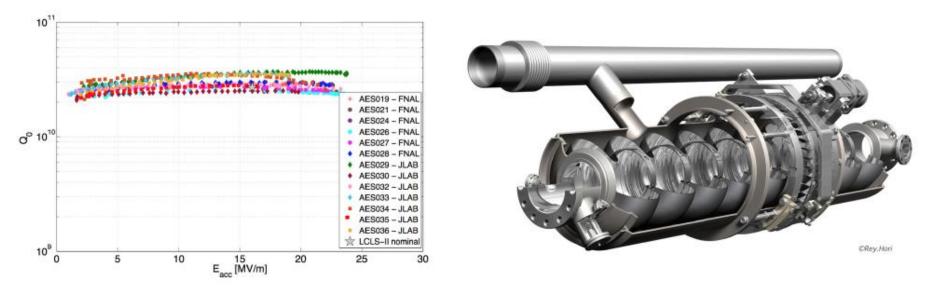
- Many design features common with the current SSR1 cryomodule design
- Coupler port locations are fixed with respect to the vacuum vessel
- Support system not subject to thermal distortions during cooldown
- To date, unproven

High-Beta Cryomodule

- 4 total cryomodules
- 6 cavities each (650 MHz, 5-cell)
- 24 total cavities
- No magnets internal to the cryomodule
- Approximate length = 9.5 m

Concept 2 (XFEL-like design)

- Design concepts are direct descendants of the XFEL design
- Could possibly use tooling common to XFEL-like cryomodules
- Coupler positions change during cooldown
- Support pipe can distort during cooldown

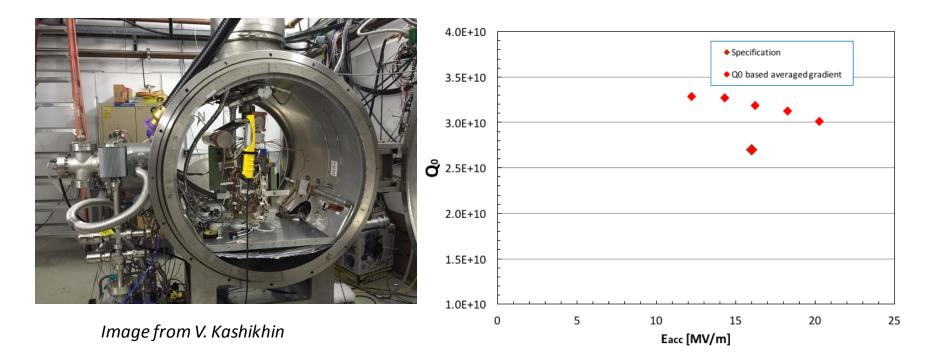

Fermilab

- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

#Fermilab LCLS II pCM Cavities

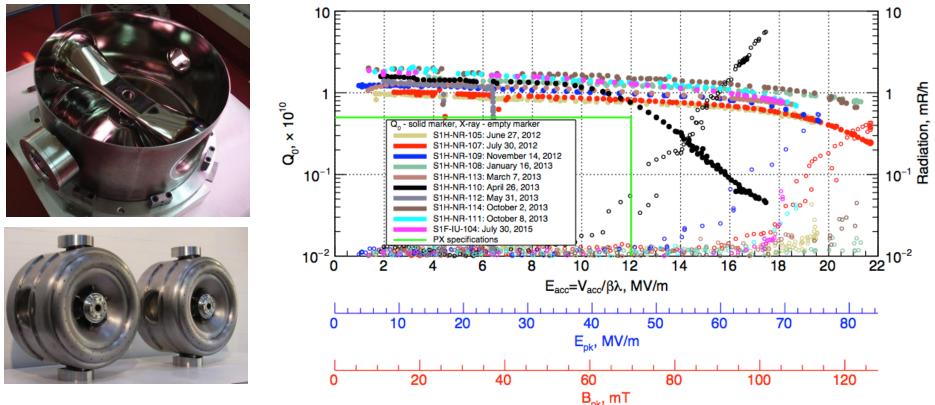
Fermilab LCLS II Post He-Vessel Welding

16 cavities dressed @ FNAL in LCLS-2 vessels ready for the prototype cryomodules – string assembly has begun, cryomodule results expected for mid 2016


Avg VT performance still exceed >3e10 at 16 MV/m, 2K post dressing

Four N doped nine cells horizontally tested in one cavity cryomodule (HTS) exceeding LCLS-2 specifications (for fast cooldowns from 45K)

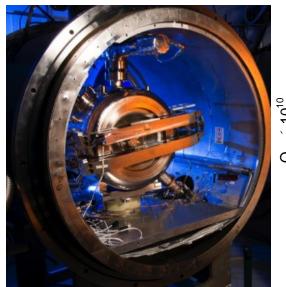
Fully integrated test : high power coupler, HOMs, tuner, magnetic shielding, thermal straps exceeding 3e10 @ 16MV/m, 2K – proof of principle that very high Q via N doping can be preserved all the way into cryomdoule

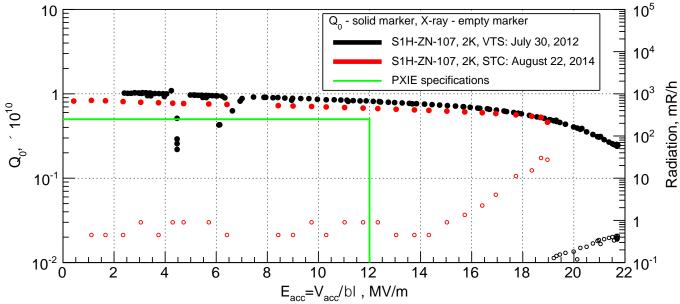

#Fermilab LCLS II Integrated Test

- Q₀ Exceeds Specification in the Presence of Coupler and HOMs
- $Q_0 \sim 3.1 \times 10^{10} @ 16 MV/m at 2K$
- No detectable field emission

Fermilab PIP II SSR1 Vertical Test

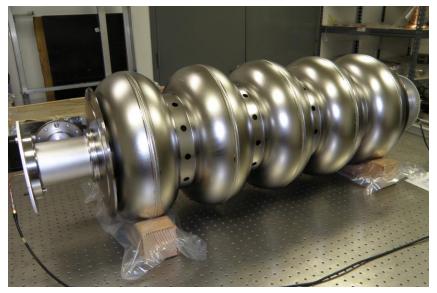
SSR1 cavities (Q_0 vs E_{acc} @ 2K)




Two SSR1 cavities were received from IUAC (India) part of the Indian Institutions and Fermilab Collaboration (IIFC). The summary plot shows one IUAC cavity (S1F-IU-104, magenta) together with all Fermilab cavities tested so far.

Fermilab PIP II SSR1 Horizontal Test

- First jacketed SSR1 successfully tested in STC at 2K. Exceeded PIP-II requirements. No degradation seen after welding process.
- Fully integrated tests with pre-production Tuner


Fermilab PIP II 650 MHz Procurement

650 MHz section:

Currently Available Cavities:

<u>1-Cell 650 MHz*</u>	<u>5-Cell 650 MHz</u>
1. B9AS-AES-001	1. B9A-AES-007
2. B9AS-AES-002	2. B9A-AES-008
3. B9AS-AES-003	3. B9A-AES-009
4. B9AS-AES-004	4. B9A-AES-010
5. B9AS-AES-005	*VTS Tested
6. B9AS-AES-006	

Expected Cavities:

<u>1-Cell 650 MHz</u> Pavac, Inc. Five are delivered and VTS-tested <u>5-Cell 650 MHz</u> Pavac, Inc. Five to be delivered in 2016.

Fermilab PIP II Development Status (6/1/2015)

SRF Development Status

Cavity	Frequency	Cavity Type	Beta	Collaborat ion?	Cavity EM Design Complete	Cavity Mech Design Complete	Single Cell / Prototype Ordered	Prototype	Prototype	TOP CM	Cavities for CM Received	Cavities for CM Tested	Cavities for CM Dressed	CM Cold Mass Design	CM Parts	# of CM Assembled	Est % complete
Half Wave Resonator (HWR)	162.5 MHz	1-HWR CW	0.11	ANL	yes	yes	yes	yes	yes	9	9	2	2	yes	yes	15%	70
Single Spoke Resonator 1 (SSR1)	325 MHz	1-spoke CW	0.22	India	yes	yes	2	2	2	10	10 +2	10	6	80%	70%	not started	75
Single Spoke Resonator 2 (SSR2)	325 MHz	1-spoke CW	0.47	India	yes	yes	not started	not started	not started	not started	not started	not started	not started	not started	not started	not started	10
Low Energy 650 (LE 650)	650 MHz	5-cell CW	0.6	India, JLAB	yes	yes	5	not started	not started	not started	not started	not started	not started	not started	not started	not started	10
High Energy 650 (HE 650)	650 MHz	5-cell CW	0.9	India	yes	yes	5 of 10	4	not started	9	4	not started	not started	5%	not started	not started	20

• Green: complete

- Yellow: in progress
- Red: not started

Fermilab

- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

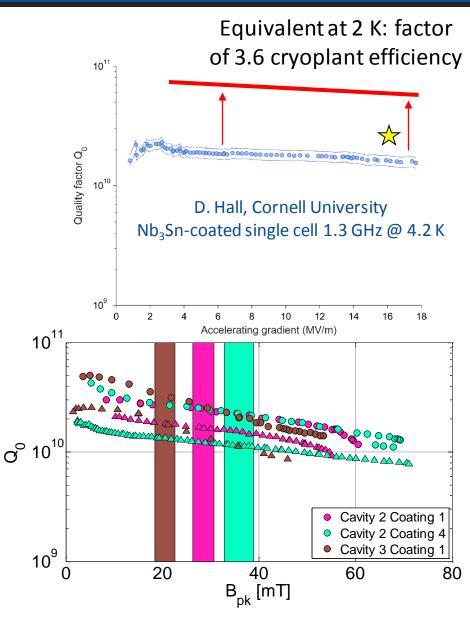
‡ Fermilab

LCLS II Schedule

					L														
Fiscal Year	2013	2014	2015	\checkmark	2016		2017						2020						
Quarter	Qtr1 Qtr2 Qtr3 Qtr4	Qtr1 Qtr2 Qtr3 Qtr4	Qtr1 Qtr2 Qtr3 Qtr4	Qtr1	Qtr2 Qtr3	Qtr4 Qt	tr1 Qtr2	Qtr3 Qt	4 Qtr1	Qtr2 Qtr3	3 Qtr4	Qtr1 Q	tr2	Qtr3	Qtr4	Qtr1	Qtr2	Qtr3	3 Qtr4
Project Milestones	CD-0 (L1)	CD-1 (L1) OCD-3E	3 (L1)		-2 (L1) -3 (L1)													
Cryo Systems Milestones	Producti Cryo Distribution Pro	3 GHz Cryomodule FDI on 1.3 GHz Cryomodu System Procurement : totype 1.3 GHz Cryom Prototype 1.3 GHz Cry	es FDR (L4) Specification Review odule Assembly Comp	lete -	- FNAL	Read	dy to St	art Produc 4.5K Cold	tion 1.3 Re Box for tion Co	· · · · · ·	Cold I GHz Cl	iles - FN/ Box for C M Produc	CP1			e - FN/	ΔL		
Cryomodules - FNAL		FNA	FNAL - Engineer L - Prototype 1.3 GHz Niobium Procure FNAL - 1.3 Gł	Cryor ment	nodule yomodule F			urement module A	ssembl	v & Tast									on:
Cryomodules - JLAB			JLAB - Engineerin JLAB - Prototype 1.3	<u> </u>	Design	FNAL FNAL -	- 1.3 G	Hz Cryomo z Cryomoo	dule S		-				2		S	tai	ths rt +
- 32,00					Hz Cryomo	dule Pro	1.3 GH	z Cryomoo	lule As	sembly & T nodule Shi		3			m	101	nth	າຣ	
Cryoplant			Cry	oplan	it Engineeri (ing & Des Cryoplan	-	rement		Cryoplant Cr		lation nt Comm	issi	oning	J				
Cryo Distribution System			Cryo Di	str. S	ys. Enginee Cryo I	ering & D Distr. Sys			/o Distr	. Sys. Inst	allatio				Light y for (•	>		

#Fermilab PIP II SRF Schedule

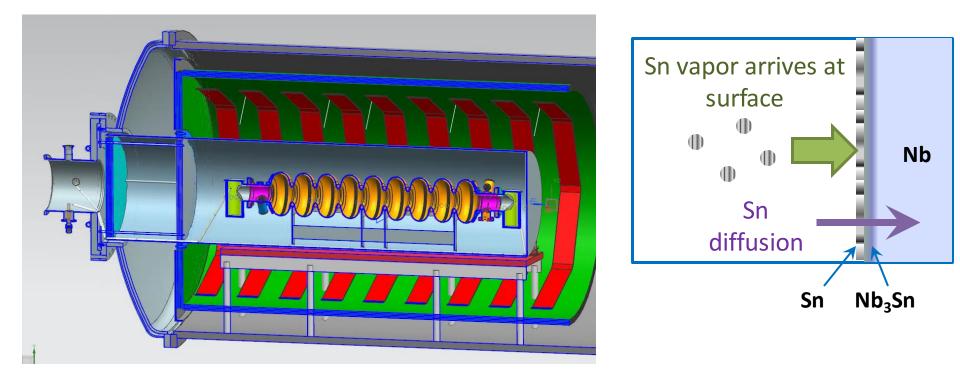
- FY16
 - SSR-1 horizontal testing
 - SSR-1 prototype cryomodule string assembly
 - 650 MHz R&D and design
- FY17
 - SSR-1 prototype cryomodule cold mass, module
 - 650 MHz cavity qualification
 - Receive HWR from Argonne
- FY18
 - RF commissioning of HWR
 - Installation of SSR-1 prototype cryomodule at PXIE


Fermilab

- Overview of projects LCLS II and PIP II
- Technical challenges
- Facilities
- Design efforts
- Critical Elements and Subsystems
- Plans and schedule
- Future R&D

Great Potential of Nb₃Sn

- High Q₀ at medium fields demonstrated: many machines – CW proton accelerators, circular high energy e⁺e⁻ colliders, light sources, industrial accelerators, many more possibilities
- High E_{acc} predicted: high energy machines



S. Posen, M. Liepe, and D. L. Hall, App. Phys. Lett., 106, 082601 (2015).

Fermilab Fabrication Technique

- Vapor diffusion start with niobium cavity and coat with tin vapor in UHV furnace
- Similar to Nb prep with extra treatment step
- Wide parameter space to explore still T vs time, tin vapor pressure vs time, nucleation technique, pretreatment, post-treatment, cooldown

‡ Fermilab

- Nb₃Sn coatings
 - Benefit to cryogenic efficiency demonstrated, predicted potential for high field operation
- Niobium coatings on copper cavities
 - significant cost savings for materials
- Magnetron RF power supplies
 - cost reduction could have substantial impact for high power accelerators

‡ Fermilab

Summary

- Very active SRF program at Fermilab for upcoming projects
 - LCLS II
 - PIP II
 - Full development from design to production
- SRF R&D
 - High Q₀ breakthrough technology nitrogen doping
 - Passive compensation for LFD and df/dp
 - Resonance control

Germilab Acknowledgements

Many thanks to colleagues, from whom I have obtained the information for this presentation – Chris Adolphsen, Anna Grassellino, Steve Holmes, Timergali Khabiboulline, Valeri Lebedev, Oleksandr Melnychuk, Tom Nicol, Tom Peterson, Yuriy Pischalnikov, Ken Primo, Leonardo Ristori, Marc Ross, Allan Rowe, Warren Schappert, Alexander Shemyakin, Genfa Wu, and Vyacheslav Yakovlev