The Status of Ion Beam Therapy

Thomas Kroc
PASI 2015 – Working Group 3, Medical Applications
November 11-13, 2015
Early Years - US

- Bevalac
 - 1975 – 1993
 - 1200 patients (majority with neon)
 - Treatment program funding was secure
 - But operating funds for Bevalac itself were discontinued due to startup of RHIC and CEBAF
HIMAC - Japan

• Celebrated 20 years this January
• World leader in carbon ion therapy
• Has moved beyond development
 – 5 carbon ion centers
Other ion therapy sites

• Heidelberg – Germany
• CERN/Enlight
 – CNAO – Italy
 – MedAustron – Austria
 – France
• China
 – Lanzhou
 – Shanghai
22m x 13m
600 tons
Similar size as synchrotron
MedAustron

NCR, P,C, P,C, P only
Issues for ion therapy vs protons

- Charge/mass twice that of protons
 - Doubles magnetic field or radius of magnets
 - Requires switching if doing proton CT with ion therapy
- Desired range requires higher MeV/nucleon
 - 240 MeV – proton
 - 300 MeV/nucleon – ions
- Multiple ion sources
- More complex radiobiology
 - More complex treatment planning
 - Iso-killing power vs isodose
What are the issues for this group?

- Can we make an order of magnitude reduction in size/cost?
- Is it really an accelerator issue?
 - How important is size/cost?
 - Any lessons from Kirby, Beltran, Pankuch?
 - Will it become a control/complexity issue?
Recent US efforts

• DOE/NCI Workshop on Ion Beam Therapy
 – Jan. 2013

• Nov, 2012 – Feb, 2013
 – Multi-Lab working group for a proton/ion center at Walter Reed Hospital
 – 0’th order cost estimate effort spread across 6 national labs
 • FNAL
 • SLAC
 • LBNL
 • BNL
 • JLAB
 • ANL
Recent US efforts

- DOE LAB 14-1142
 - Accelerator Stewardship Topical Areas
 - Particle Therapy Beam Delivery Improvements
 - Lawrence Berkeley National Laboratory, The Paul Scherrer Institute, and Varian Particle Therapy, Inc.
 - develop light weight superconducting magnet technology that will reduce the size and weight of particle beam delivery systems by nearly a factor of 10.
 - Massachusetts Institute of Technology and ProNova Solutions, LLC
 - Develop an innovative design for an ironless superconducting cyclotron

- DOE LAB 16-1438
 - Proposals due this month
• NCI PAR-13-371
 – Planning for a National Center for Particle Beam Radiation Therapy Research (P20)
 • The Center must be planned to operate as a research center adjunct to an independently created and funded, sustainable clinical facility for PBRT.
 – 2 Awards
 • National Particle Therapy Research Center
 – Specifications for research line
 – Monte Carlo Dose Engine
 – Management/infrastructure development
 • NAPTA: Optimizing clinical trial design & delivery of particle therapy for cancer
 – Integration of existing research
 – Range uncertainty/radiobiology
 – Management/infrastructure development
The Center must be planned to operate as a research center adjunct to an ...

...an independently created and funded, sustainable clinical facility
• **Other interests**
 - **Mayo Clinic**
 - Joint Symposium on Carbon Ion Therapy – May, 2013
 - **Walter Reed National Military Medical Center – 2012/2013**
 - Effort involving 6 national labs to develop cost estimate and white paper for ion therapy center
 - Looked at synchrotron, cyclotron, and cyclinac options
22m x 13m
600 tons
Similar size as synchrotron
Figure 5 The rotating gantry installed at the Heidelberg Ion Therapy Center facility

Superconducting rotating-gantry

Ion kind: 12C
Irradiation method: 3D Scanning
Beam energy: 430 MeV/n
Maximum range: 30 cm in water
Scan size: 200×200 mm2
Beam orbit radius: 5.45 m
Length: 13 m

The size and weight are considerably reduced

Weight: order of 300 tons
Conclusion

• Medical applications straddle too many boundaries to get much traction in the US
• The National Cancer Institute does not build hardware
• The Department of Energy does not perform medical research
• As can be seen in the history of proton therapy, the US model leaves late stage development and commercialization to industry
• While there are significant accelerator technology challenges yet to be faced, the larger issue for wide-scale utilization of ion beam therapy will be the economic integration of all the necessary functions – imaging, guidance, control, patient management, immobilization, etc.
So what do we need from an accelerator?

- Conform dose
- Change energy rapidly
- Range of ions ?
- Spot scanning
- Number of beams - gantry
- Compact
- Cheap
- Looks like photon treatment
What do we need from an accelerator?

- Maximum dose to tumour
- Minimise effects to normal tissue
- Conform dose to tumour
- Hypo-fractionation – dose escalation?
- Spot scanning
- Multiple beams – Gantry design
- Range of ions
- Compact
- Cheap
- Easy to operate
- Faster throughput
- Reliable