Channel Filter Service Interface

Brandon Eberly
September 8, 2015

Introduction

*Piggy-backed off of work done by Gianluca
*See talk at July 28 coordination meeting, though many class names and file
locations have changed

*Used “provider&service” model established for pedestal database readout

*Created two implementations of provider&service for larsoft, one service
implementation for uboonecode

*Modified ChannelFilter to be a wrapper for the provider&service interface.
*ChannelFilter is “deprecated”, but experiments can continue to use it
*Functionality is identical, but experiments will need to change their fcl

*Feature branches:
slarevt feature/Issuel1083
lareventdisplay feature/eberly_channelfilter
euboonecode feature/eberly_channelfilter

Brandon Eberly, SLAC 2

ChannelFilter Provider Interface

/// Returns whether the specified channel is physical and connected to wire
virtual bool IsPresent(DBChannelID t channel) const = 0;

/// Returns whether the specified channel is bad in the current run
virtual bool IsBad(DBChannelID t channel) const = 0;

/// Returns whether the specified channel is noisy in the current run
virtual bool IsNoisy(DBChannelID t channel) const = 0;

/// Returns whether the specified channel is physical and good
virtual bool IsGood(DBChannelID t channel) const = 0;

/// Returns a status integer
virtual unsigned short Status(DBChannelID t channel) const
{ return 99;}

/// Returns a copy of set of good channel IDs for the current run
virtual DBChannelSet t const GoodChannels() const = 0;

/// Returns a copy of set of bad channel IDs for the current run
virtual DBChannelSet t const BadChannels() const = 0;

/// Returns a copy of set of noisy channel IDs for the current run
virtual DBChannelSet t const NoisyChannels() const = 0;

/// Prepares the object to provide information about the specified time
/// @return whether information is available for the specified time
virtual bool Update(DBTimeStamp t ts) = 0;

‘SeE!larevt/CalibrationDBI/Interface/IChannelFilterProvider.h. Putﬂicinterface:

Channel
statuses that
must always be
implemented

Allows
implementation of
additional statuses

Get

std: :set<ChannelID>
for implemented
statuses

Update (...) for
database caching

Brandon Eberly, SLAC 3

ChannelFilter Service Interface

See 1arevt/CalibrationDBI/Interface/IChannelFilterService.h:

class IChannelFilterService {
public:

/// Destructor
virtual ~IChannelFilterService() = default;

//
// Actual interface here

//

//@{

/// Returns a reference to the service provider

IChannelFilterProvider const& GetFilter() comnst
{ return DoGetFilter(); }

//@}

//@{

/// Returns a pointer to the service provider

IChannelFilterProvider const* GetFilterPtr() const
{ return DoGetFilterPtr(); }

//@}

//
// end of interface
//

private:

/// Returns a pointer to the service provider
virtual IChannelFilterProvider const* DoGetFilterPtr() const = 0;

/// Returns a reference to the service provider
virtual IChannelFilterProvider const& DoGetFilter() const = 0;

Brandon Eberly, SLAC 4

ChannelFilter deprecation

*ChannelFilter is now a wrapper for the previous interfaces. For example:

[17177
bool filter::ChannelFilter::BadChannel(uint32 t channel) const {
return art::ServiceHandle<lariov::IChannelFilterService>()
->GetFilter().IsBad(channel);

*larevt/Filters/SimpleChannelFilter and larevt/Filters/SimpleChannelFilterService dle
implementations of the interface that preserve the previous functionality of
ChannelFilter (fcl-configurable list of bad/noisy channels)

*Example: if you are Argoneut, add these lines to your fcl file (if this doesn’t work, let
me know — similar file provided for bo, not sure what Gianluca did for Dune):

#include “channelfilter argoneut.fcl” #located in larevt/Filters/
services.user.IChannelFilterService: (@local::channel filter argoneut

Brandon Eberly, SLAC 5

Single-IOV Implementation for Database

*Seein larevt/CalibrationDBI: IOVData/ChannelStatus.h
Providers/SIOVChannelFilterProvider.*
Services/SIOVChannelFilterService service.cc

*Provider inherits from provider interface and DatabaseRetrievalAlg (latter
provides hooks to conditions database)
Service calls Update (...) before each event is processed (PreProcessEvent)

*Channel statuses are ordered from “worst” to “best”, to allow cutting on
IChannelFilterProvider: :Status () inlarsoftalgorithms

enum chStatus {kDISCONNECTED=0, kDEAD=1, kLOWNOISE=2, kNOISY=3, kGOOD=4, kKUNKNOWN=5};

*Channel statuses kLOWNOISE and kDEAD both map to IsBad

/// Returns whether the specified channel is bad in the current run
bool IsBad(DBChannelID t channel) const override {
return this->GetChannelStatus(channel).IsDead() || this->GetChannelStatus(channel).IsLowNoise();

}

*Provider has function AddNoisyChannel (.. .) toallow the service that owns it to
modify the list of noisy channels (useful if channel noise varies by event)
elarsoft service implementation does not use this; uboonecode impl does

Brandon Eberly, SLAC 6

Other Changes

*Channel ID and Timestamp types used by database interfaces now hide

behind typedefs
elarevt/CalibrationDBI/Interface/CalibrationDBIFwd.h

*The ChannellD is changed from uint64 tto uint32 t, matching
what is used internally by art/larsoft for channellDs (OKed by Jon Paley)

*Detector Pedestal interfaces and implementations updated to use the
typedefs

*Some internal changes to the detector pedestal implementation
*Remove a try/catch block that was hit every time conditions were
requested (told that this was slow)

*Fill default values (if used) in constructor using list of channels in
geometry

*These changes do not change functionality, unless you were in the
habit of asking for default values for channels that do not exist...

Brandon Eberly, SLAC 7

Next

*Feature branches are ready to be merged into develop
*MicroBooNE fcl files are configured to use its implementation of the service

*Might need data product to store event-by-event noisy channel information
*Allow uboonecode ChannelFilter implementation to retrieve this data
product, rather than determine noisy channels internally
*Maybe larsoft implementation would use this too

*Some interest in MicroBooNE for channel statuses that vary by TDC (e.g. half a
wire is noisy)
*If needed, we can overload the provider interface with an optional
argument.

*Working on interface for PMT conditions
(larevt feature/eberly PmtGainDBI — only compiles if feature/Issue1083 is
merged in)
*Might be very uboone-specific, so | might just move this work over to
uboonecode

Brandon Eberly, SLAC 8

Organization/Naming Discussion

*Gianluca suggested | talk about how to organize our conditions interface code
*We have a couple interfaces already, with more to come. They should all

live together

larevt/Conditions

*My suggestion: l
Interface SinglelOV MultilOV
Holds all abstract Holds all files related to Holds all files related to
interfaces for data the default single-10V the default multiple-IOV
providers and services, database database
along with typedefs and implementation of the implementation of the
utility classes used in interfaces interfaces

the interfaces
Use a single namespace for all classes in

larevt/Conditions: larcond

*If you approve, we can start a feature branch to make these changes

Brandon Eberly, SLAC

Brandon Eberly, SLAC

Provider&Service Model

One DataProviderinterface per One service interface per database
database folder folder
DataProviderInterface These classes depend on
and talk to art

virtual get/setValue(channel)
virtual Update(Timestamp)

DataProviderServiceInterface

virtual const DataProviderInterface & getDPI()

DataProviderA

Implements:
virtual get/setValue(channel)
virtual Update(Timestamp)

DataProvidersServiceA

Implements:
Contains: virtual const DataProviderInterface & getDPI()
FErEEEE preEvent(art::Event) / preSubRun / preRun as
appropriate, which calls
DataProviderA: :Update(Timestamp)
These classes are independent of art Contains:

DataProviderA

diagram by E. Snider

Brandon Eberly, SLAC

