Open Questions for Photon Detection in LAr

M. Toups, FNAL 9/24/15

Outline

- Purpose of Talk
- Overview of light collection in LArTPCs
- Physics requirements, reconstruction, and simulation
- ³⁹Ar and other R&D
- Additional open questions more projectaligned

Caveats and Purpose of This Talk

- This is an "outsider's" perspective on open questions facing the DUNE photon detection system
 - Some of these questions (I know) are already being or have already been at least partially addressed
 - But many of these questions haven't been addressed yet
- Some of the items I mention overlap with other working groups, implying an interface
- The purpose of this talk is to give a sense for the great number of opportunities that exists for collaborators to make important contributions to the DUNE photon detection system
 - This is not an exhaustive, prioritized, or time-ordered list
 - However, it can used it as a starting point

Potential Uses of LAr Light Information

- Triggering
- Timing (to correct the TPC energy measurement for nonbeam events or to correlate with the beam timing)
- Position information
- Event reconstruction (identify particle decay sequences in the pattern of detected light)
- Particle ID information (prompt-to-late light ratio)
- Improved energy resolution (by adding the charge and light)
- Lowering energy thresholds

Physics Requirements For Photon Detection System

- Are these purely driven by supernova burst neutrinos (SBNs)?
 - Trigger on ~5 MeV electrons?
 - Reconstruct time of 5 MeV electrons to $^{\sim}1 \mu s$
- Is pile-up from ³⁹Ar a problem, especially at low energies
 - What is the upper limit on the single PE rate per photon detector in order to detect SBNs?
 - How localized should the reconstructed light signal be?
- Can timing be used to study the beam in some way?
- Do we need to instrument the LAr outside the active TPC because of dirt backgrounds?
- Is there a requirement for detecting de-excitation gammas?
- Is there any requirement on the uniformity of the light collection system response?
- Is there any requirement on the energy resolution coming just from the light collection system?
- What about flash-counting to, for example, identify Michel electrons from π^+/μ^+ final state particles?
- Late light detection requirements?

Studies of reconstructed light information

- Michel identification (and rejection) to obtain a sample of $(CCv_{\mu} + CC\overline{v}_{\mu})$ events enriched in CCv_{μ}
- Supernova burst neutrinos (SBNs)
 - Does ³⁹Ar contamination impose constrains on position and time resolution?
 - How can de-excitation gammas be used to help identify SBNs?
- Particle ID in real neutrino events (prompt/late light ratio and light flash pattern recognition), etc.

Improve validation of LAr light simulations

- Do we have VUV reflectivity numbers we can trust on various detector surfaces?
- What will the Rayleigh scattering length be in DUNE (with real density fluctuations, etc.)? How will it affect reconstruction?
- What is the absorption length of VUV light in LAr with realistic purity values and how will it (along with Rayleigh scattering) affect reconstruction?
- Will we see light outside the current drift region in which the interaction occurred (do double-sided light guide bars help or hurt)?
- Do we have light yield and prompt/late light simulations we trust for at varying levels of nitrogen contamination?

Improve LAr Light Simulations

- Can we add precise timing information into the Monte Carlo?
- Should we model light propagation in light guide bars?
- Can we develop a method to study change in optical model as a function of detector parameters (e.g. multi-dimensional spline fits)
- Can importance sampling be used to speed up photon simulations?
- Can GPUs accelerate photon simulation, either in Geant4 or alternatives such as Chroma?

Impact of ³⁹Ar

- Measure impact of ³⁹Ar on photon detection system
 - Dominates the SiPM dark rate by two orders of magnitude
 - Also produces a correlated 2 PE rate
- Test at FNAL?
 - Roughly all of the Ar depleted in ³⁹Ar in the world passes through Fermilab
 - Can we borrow some of this Ar for a dedicated test at Fermilab?
- Test Underground?
 - Could this be studied in a test underground with atmospheric LAr if dark rate, cosmic rates, etc. are all well-known?

Other R&D

- Doping LAr (with for example Xenon)
- Anode-coupled readout
- 128-nm sensitive SiPMs
- LAPPDs?
- TPB-coated reflector foils?

Long-term stability Tests

SiPMs

- Long term tests of SiPMs in LAr (lifetime, gain stability, dark rate stability)
 - If SiPMs mounted on boards, long term tests of these in LAr
- Cryo-cycle tests of SiPMs
- Develop reliable handling procedures (can we achieve < 1% mortality rate?)

Light guide bars

- Long term tests of light guide bars in LAr (stability of light output)
- Cryo-cycle tests of light guide bars

Dip-coated light guide bar production

- Light guide bar production
 - Acrylic sheet cutting and polishing procedure
 - Acrylic qualification procedure (bulk attenuation length, losses per bounce)
 - Acrylic annealing procedure
- Dip-coating procedure
 - Environmental controls (temperature, humidity, ?)
 - Dipping and retraction speed

Quality Assurance (QA)

- QA on light guide bars
 - Coating thickness measurement
 - Attenuation measurements
 - This can be done warm
 - Absolute light yield measurements
 - Can this be done warm?
 - At least a sub-sample should be tested in LAr
 - Tests thermal stresses (crazing) and with 128 nm light

Characterize SiPM Response Individually vs. Ganged Together

- How to gang SiPMs together?
 - In parallel or in series (or something else)?
 - Before or after pre-amplifier (or both)?
 - Cold or warm (or both)?
- Robustness of ganging SiPMs together
 - How is the signal affected if one SiPM dies?
 - Given known failure rates, what fraction of detector will be affected by this as a function of time?
- Voltage tuning
 - Is this necessary or can we apply the same voltage to a set of SiPMs (either selected randomly or deliberately)?
- Time and Charge Resolution
 - How do the signals degrade in the presence of noise as a function of the number of SiPMs ganged together?

Cables, Connectors, and Feedthroughs

- Do vetted alternatives to the Atlas high channel density cold feedthrough exist?
 - Can we develop other solutions?
 - What is the maximum channel density?
- Are there alternatives to the current photon detection system cable plant design?
 - Use cold pre-amplifiers to lower cable noise rejection requirements
 - Use digital SiPMs?

Photodetector Electronics

- Dynamic range
- Time/charge resolution
- Do we need to collect the late light?
- Do we need to read out full waveforms?
- Triggering?

Conclusion

 There are an incredible amount of open questions for DUNE photon detection

Lots of opportunities exist to make an impact

We need to get started now