Update on IOTA simulations with Synergia

Nathan Cook RadiaSoft, LLC., Boulder, CO <u>ncook@radiasoft.net</u>

September 24, 2015 IOTA Physics Telecon

Boulder, Colorado USA - www.radiasoft.net

Outline

• Update on simulation capabilities

• Higher order terms in nonlinear integrable optics

• Chromatic effects in the current IOTA lattice

Synergia Simulations

- Currently performing simulations using Synergia 2.1
- Capabilities include:
 - Full CHEF propagation direct symplectic tracking for single particle dynamics
 - Dynamic lattice element adjustments
 - Polynomial map expansion to arbitrary order
 - Fit tunes or chromaticities to desired values
 - Construct lattice from MAD lattice file, or create arbitrary 6x6 matrix elements to study "toy" problems
 - Benchmarked description of nonlinear element, with bunch matching using generalized K-V distribution
 - Initial testing of 2.5D/3D space charge solvers

🙈 radiasoft

Higher order terms in the Nonlinear Hamiltonian

- Previous analysis computed the single turn map for the ideal integrable optics lattice
- Expansion of the Hamiltonian lowest order correction to H in v_0 , the "tune-advance" through the nonlinear drift

$$\mathscr{H} = \nu_0 \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + \underbrace{\left\{ \frac{1}{2} \left(\vec{p}^2 + \vec{x}^2 \right) + tV(\hat{x}, \hat{y}) \right\}}_{\bullet} + tV(\hat{x}, \hat$$

D.-N. Hamiltonian

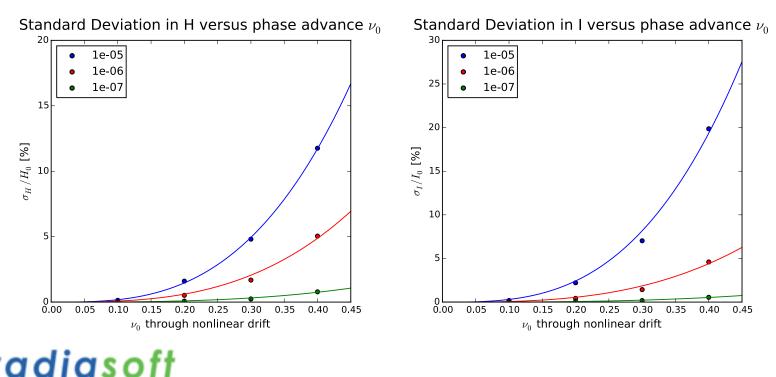
$$\frac{1}{6}\nu_0^3 \underbrace{\left\{\frac{1}{4}[\vec{p}^2 + \vec{x}^2, [\vec{p}^2 + \vec{x}^2, tV(\hat{x}, \hat{y})]] - \frac{t^2}{2}[V(\hat{x}, \hat{y}), [V(\hat{x}, \hat{y}), \vec{p}^2 + \vec{x}^2]]\right\}}_{\text{Next-order correction}} + \mathcal{O}(\nu_0^5).$$

• There is to leading order a correction to the invariant H_0 which scales with v_0^3 , and we should thus expect to see a variation in H from the first order estimate H_0

$$\mathscr{H} = H_0\nu_0 + H_2\nu_0^3 + \dots$$

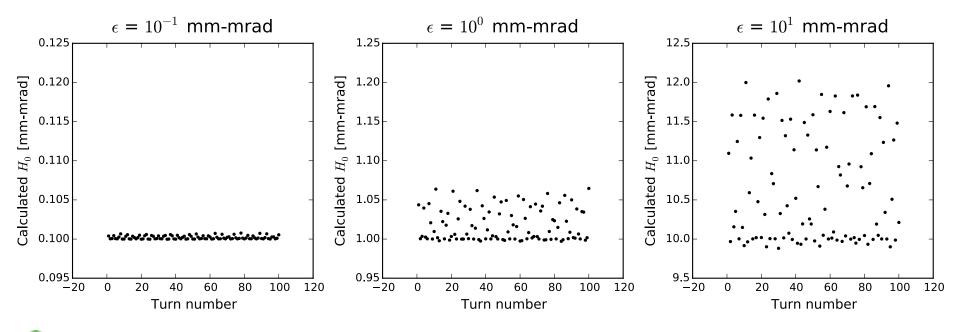
Variation in the first invariant - H_0

- Simulated a toy-model IOTA lattice, comprised of a nonlinear element followed by a corresponding 6x6 matrix representing a thin double-focusing lens.
 - Variations of the nonlinear element with different v_0 are calculated using the MADX script released by Fermilab
 - The same matched bunch is used for each v_0



Variation in H₀ with increasing emittance

- Greater variation in H₀ with increasing emittance coefficients in the expansion of the Hamiltonian vary with ε^3 .
- Ex. For a NL segment with $v_0 = 0.3$, a KV distribution with $H_0 = 10$ mm-mrad demonstrates an average r.m.s. variation of 5% in calculated value of of H_0 .



Chromatic Considerations in IOTA

- Recently, tests performed for matched bunches with energy deviations $\delta \leq 0.5\%$, with and without chromaticity correction
- Simulations of chromaticity corrected lattice
 - Some beam loss (4%) even for a bunch with δ = 0.1% and a normalized emittance of ϵ_x = 0.03 mm-mrad
 - Invariant clearly not preserved $\sigma_H > 17\%$
 - As δ approaches 0.4%, the majority of the beam is lost
- **Uncorrected lattice** retains better single particle dynamics
 - For $\delta = 0.1\%$, no particle loss and $\sigma_{\rm H} \approx 12\%$
- **Conclusion**: Off-energy particles in IOTA are more sensitive to sextupole fields than to natural chromaticity of the lattice.

Chromaticity Correction Schemes

• For realistic energy spreads, chromaticity significantly perturbs integrable motion

$$\overline{H} = \overline{H}_0 + \Delta_C \left(\overline{p}_x^2 + \overline{x}^2 - \overline{p}_y^2 - \overline{y}^2 \right)$$

- Recent work by Webb et al. presents a chromaticity correction scheme which preserves integrability
 - Require equal horizontal and vertical chromaticities $C_x = C_y$
 - Sextupoles separated by a phase advance of $(2n + 1)\pi$
- Recover normalized Hamiltonian with adjustment to nonlinear strength parameter, t

$$H_0 = \left(1 - \frac{\mu_0 C(\delta)}{\nu_0}\right) \left[\frac{1}{2} \left(p_x^2 + p_y^2 + x^2 + y^2\right) + \frac{1}{1 - \frac{\mu_0 C(\delta)}{\nu_0}} V(x, y)\right]$$

• Current work is aimed at adjusting IOTA-110 design to meet these requirements for basic testing

🙈 radiasoft