

BNL LHC Hi-Lumi QXF Vertical Test Facility Status Update

M. Anerella, H. Hocker, P. Joshi, P. Kovach, A. Marone September 25, 2015

Outline

Cryogenic Facility

Power Supply

Test dewar

Schedule to Completion

Budget Review

Outline

Cryogenic Facility

Cryogenic Facility p.1 Main Refrigeration Units

- CTI Model 4000 refrigerator (primary unit, 320 l/hr. uses (2) reciprocating engine expanders)
 - ✓ Rebuilt expander in 2013
 - ✓ Unit in good working condition

- Koch Model 1600 Wet Expander
 - ✓ Unit in good working condition
 - Seals, O-rings, etc. to be changed ~ October-November 2015

Note: all work is "off-Project", i.e., BNL funded

Cryogenic Facility p.2 Compressors

- Mycom Compressor (primary unit, 2 stage, 800 hp, 160 g/s)
 - ✓ Purchased & received critical spares:
 - √ new 2nd stage compressor head
 - √ new 400 hp motor
 - ✓ new oil heat exchanger
 - √ new helium heat exchanger
 - ✓ Maintenance items completed:
 - ✓ Installed new oil filter & seals
 - ✓ Repaired oil leaks
 - ✓ Replaced oil line clamps
 - ✓ Refurbished & resealed heat exchanger
- Sullair 350 Compressor (single stage, 350 hp, 51 g/s)
 - ✓ Purchased & received critical spares:
 - √ new compressor screw
 - √ new oil pump

Note: all work is "off-Project", i.e., BNL funded

Cryogenic Facility p.3 Secondary Refrigerator

- CVI Refrigerator (backup unit, 2 turbines, 160 l/hr)
 - ✓ Controls modernized in 2003
 - ✓ Replaced (1st stage nitrogen-helium) heat exchanger
 - ✓ Replaced turbine chilled water heat exchanger
 - ✓ Replaced temperature sensors
 - ✓ Updated temperature readout system

Note: all work is "off-Project", i.e., BNL funded

Cryogenic Facility p.4 Nash Helium Vacuum Pump

- Nash Vacuum Pump (2.7 g/s @ 1.8K)
 - ✓ Connected helium exhaust gas line to 100 hp compressor and inline purifier, to reclaim helium gas (was previously routed to dirty gas facility)
 - ✓ Purchased ("off-Project") new 100 hp Sullair compressor (to be installed, October 2015)
 - ✓ Replaced legacy soldered copper water lines with welded stainless steel
 - ✓ Purchased new booster and liquid ring vacuum pumps
 - ✓ Refurbished / purchased spare chilled water heat exchangers
 - ✓ Replaced drive belts
 - ✓ Repaired service air supply line
 - ✓ Updated control system
 - → Turn-on scheduled for October 2015
 - (FY16) Install new transfer line, valve to test dewar

Cryogenic Facility p.5

- Inline Purifiers
 - ✓ Replaced Polyflow lines
- Valve Boxes
 - ✓ Replaced Polyflow lines
- Quench Tank
 - ✓ Replaced valve & legacy soldered copper lines with stainless steel welded pipe; rerouted quench recovery line to improve flow
 - (Underway) Replace legacy soldered copper small diameter return manifold piping with large diameter welded stainless steel
 - (Underway) Purchase return manifold valves

"before"

"now"

Cryogenic Facility p.6

(FY16)*

 Re-commission Sullair Compressor (backup to Mycom, single stage, 500 hp, 94 g/s)

(FY17)*

 Re-commission Kinney Vacuum Pump (backup to or increased capacity for Nash Pump, 2.0 g/s He @ 1.8K)

^{*} Pending final budget authorization

Outline

Power Supply

Power Supply Status p.1

All parts received, installation underway

Using existing 30KA Power Supply:

- Upgrade IGBT based Energy Extraction Switch to 22KA capacity (<100 µsec shutoff)
- 1st 15KA cabinet complete, testing underway
 - Current sharing of (6) IGBT's verified
 - Operated in steady state to 12KA, shutoff tests
- 2nd 15KA cabinet assembly started

Power Supply Status p.2

Fast Data Acquisition System for Voltage Taps:

- 128 channels
- ✓ All isolators / pre-amplifiers assembled, calibrated & tested.
- ✓ Cable end connector assembly complete on dewar end.
- ✓ Acquisition software written/debugged/tested.
- 8 channel Quench Detector:
- ✓ Assembled & tested.
- ✓ Software written & tested.

Strain Gauge readout system:

Assembly underway

(FY16) - Spike Detector & Quench Antenna Data Acquisition System to be designed & built

Power Supply Status p.3

All parts ordered/fabricated, installation October 2015

Using existing 30KA Power Supply:

- Extend 30KA water cooled power cables.
 - ✓ Water cooled bus received
 - Flexible copper top hat connectors received
- Build support framework for cables
 - ✓ Unistrut hardware & cable trays ordered
- Installation scheduled in October 2015

Outline

Test Dewar

Test Dewar Status p.1 Overall design (final)

- Vent and burst disc in lambda plate (for Safety Approval)
- Gravity seal at lambda plate (was bolted)

Lambda plate sealing detail

+200 mm extended helium dewar bottom

Heat exchanger in magnet helium passage (left) and outside Mirror O.D. (right)

Test Dewar Status p.2 Heat Exchanger Assembly

- 24 detail parts drawings released for fabrication 9/24/15
- Purchase requisitions for precool heat exchanger, bellows submitted 9/28/15

Test Dewar Status p.3 Helium Dewar & Outer 4K Heat Shield

- 13 helium dewar detail parts drawings released for fabrication by 9/25/15
- 16 heat shield detail parts drawings released for fabrication by 10/1/15

Test Dewar Status p.4 Lambda Plate

- 24 lambda plate detail parts drawings released for fabrication by 10/13/15
- 4 magnet lead solder fixture drawings released for fabrication by 9/28/15

Note: exiting magnet leads will be cut to ~ 160 mm past splice box; is this acceptable?

Test Dewar Status p.5 Top Hat & Warm Bore Tube

- 24KA vapor cooled leads:
 - Requisition approved 3/17/15
 - Vendor drawing approval 5/6/15
 - Delivery scheduled 11/4/15
- 46 top hat detail parts drawings released for fabrication by 11/3/15*
- Warm bore tube:
 - Tubes received from FNAL
 - 6 warm bore tube assembly detail parts drawings released for fabrication by 10/16/15**
- * Represents LAST DRAWINGS TO BE RELEASED
- **Not needed for Mirror Assembly test

Schedule To Completion

Budget Review

BNL (non-LARP) FY15 funded cryogenic infrastructure costs incurred:

l)	Purchase / Install Spare Components	\$312K
II)	Refurbish CVI refrigerator	\$135K
•	Total	\$447K

BNL non-LARP funding = \$976K total

- II. BNL (non-LARP) FY16 expected cryogenic infrastructure funding:
 - I) Commission Sullair 500 compressor

\$308K

III. BNL (non-LARP) FY17 requested cryogenic infrastructure funding:

Commission Kinney Vacuum Pump \$221K

LARP FUNDING:

\$347,971	FY16 Material to go
\$ <u>107,457</u>	+ FY16 Labor to go
\$455,428	= TOTAL cost to go
<u>-\$347,580</u>	- BNL LARP FY15 Carry-forward
\$107,848	= FY16 LARP Funding needed*

*Note: FY16 funding restores overrun, but (again) provides no contingency; based on performance to date, ~ \$200K additional funding may be required

- Good news high risk activity (power supply development) risk is retired
- Less good news all of fabricated dewar parts remain (although prices are based on machine shop quotes, not engineering estimates)