

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

MINERvA

Gabriel N. Perdue 49th Annual Fermilab User's Meeting 16 June 2016

Overview

- Introduction to the experiment
 - Some motivation and a jargon-decoder
- Year in review
- Operations status
- Physics results
 - Strange physics
 - Multi-nucleon effects
 - Electron-neutrinos
 - Wish I had time for more!
- Ramping up on the "Medium Energy" beam
- Conclusions

Another Module

MINERvA

One Module

- Fine-grained, highresolution scintillator tracker for detailed kinematic reconstruction of neutrinonucleus interactions.
- Cross-section program wellsuited to next-generation oscillation experiments.
- Nuclear effects with a variety of target materials ranging from Helium to Lead.

Motivation

- Why measure cross sections?
 - *Because they're there.* Also...
 - Important and useful ingredients for oscillation experiments:
 - We measure the rates for important backgrounds.
 - We improve models for measuring neutrino energy.
 - We help experiments to understand their signal efficiency.
 - We're going to report on results today that illustrate all three of these points.
 - To properly measure a cross section, you must also understand your neutrino flux - we contribute a lot to techniques for doing this that are very useful to the whole community. We're down to ~7% uncertainty in our flux.
- New information about the structure of the nucleus that is only available with a Weak probe is a natural (and awesome) by-product.

Reaction channel menagerie

What we pretend we scatter from...

Year in Review (from last User's Meeting)

E

- 7 Wine and Cheese Seminars at FNAL (including a *back-to-back-to-back run*).
 - And another Wine and Cheese tomorrow! Double-differential cross sections for CCQE-like antineutrinos!
- 6 PhDs awarded
- Papers!

6

- Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at $<E_v>=3.6$ GeV, PRL 116, 081802
- Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer, PRL 116, 071802
- Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA, PRD 93, 071101(R)
- Measurement of Neutrino Flux using Neutrino-Electron Elastic Scattering, PRD 93, 112007
- Evidence for neutral-current diffractive neutral pion production from hydrogen in neutrino interactions on hydrocarbon, arXiv 1604.01728, submitted to PRL
- Measurement of K⁺ production in charged-current v_{μ} interactions, arXiv 1604.03920, submitted to PRD
- And more coming soon:
 - Observation of Coherent Production of K+ in Neutrino Interactions on Carbon Nuclei Very soon!
 - Differential cross sections for Nu-mu-CC-pi-plus and Nu-mu-bar-CC-pi-zero interactions on hydrocarbon in the few GeV region in MINERvA *Very soon!*
 - Neutrino Flux Predictions for the NuMI Beam Very soon!
 - plus several others coming later this year!

Year in Review

RL 116, 081802 (2016)	PHYSICAL	REVIEW	LETTERS	week ending 26 FEBRUARY 2016
, , ,				

Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at $\langle E_{\nu} \rangle = 3.6 \text{ GeV}$

J. Wolcott, ^{1,2} L. Aliaga,³ O. Altinok,² L. Bellantoni,⁴ A. Bercellie,¹ M. Betancourt,⁴ A. Bodek,¹ A. Bravar,⁵ H. Budd,¹ T. Cai,¹ M. F. Carneiro,⁶ J. Chvojka,¹ H. da Motta,⁶ J. Devan,³ S. A. Dytman,⁷ G. A. Díaz,^{1,8} B. Eberly,^{7,†} J. Felix,⁹ L. Fields,^{4,10} R. Fing,¹ A. M. Cargo,⁸ P. Calindo,¹¹ H. Callagher,² A. Ghosh,^{6,1} T. Calan,^{1,4} P. Crap,¹² D. A. Herrie,⁴

Evidence for neutral-current diffractive π^0 production from

hydrogen in neutrino interactions on hydrocarbon

PRL 116, 071802 (2016)

PHYSICAL REVIEW LETTERS

week ending 19 FEBRUARY 2016

Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer

P. A. Rodrigues, ^{1,†} J. Demgen, ² E. Miltenberger, ² L. Aliaga, ³ O. Altinok, ⁴ L. Bellantoni, ⁵ A. Bercellie, ¹ M. Betancourt, ⁵ A. Bodek, ¹ A. Bravar, ⁶ H. Budd, ¹ T. Cai, ¹ M. F. Carneiro, ⁷ J. Chvojka, ¹ J. Devan, ³ S. A. Dytman, ⁸ G. A. Díaz, ^{1,9} B. Eberly, ^{8,‡} M. Elkins, ² J. Felix, ¹⁰ L. Fields, ^{5,10} R. Fine, ¹ A. M. Gago, ⁹ R. Galindo, ¹² H. Gallagher, ⁴ A. Ghosh, ^{7,1}

PHYSICAL REVIEW D 93, 071101(R) (2016)

Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

J. Mousseau,^{1,*} M. Wospakrik,¹ L. Aliaga,² O. Altinok,³ L. Bellantoni,⁴ A. Bercellie,⁵ M. Betancourt,⁴ A. Bodek,⁵ A. Bravar,⁶ H. Budd,⁵ T. Cai,⁵ M. F. Carneiro,⁷ M. E. Christy,⁸ J. Chvojka,⁵ H. da Motta,⁷ J. Devan,² S. A. Dytman,⁹ G. A. Díaz,^{5,10} B. Eberly,^{9,†} I. Felix,¹¹ I. Fields,^{4,12} R. Fine,⁵ A. M. Gago,¹⁰ R. Calindo,¹³ H. Gallagher,³

Measurement of K^+ production in charged-current ν_{μ} interactions

C.M. Marshall,¹ L. Aliaga,^{2,3} O. Altinok,⁴ L. Bellantoni,⁵ A. Bercellie,¹ M. Betancourt,⁵ A. Bodek,¹ A. Bravar,⁶ H. Budd,¹ T. Cai,¹ M.F. Carneiro,⁷ J. Chvojka,¹ H. da Motta,⁷ J. Devan,² S.A. Dytman,⁸ G.A. Díaz,^{1,3}

PHYSICAL REVIEW D 93, 112007 (2016)

Measurement of neutrino flux from neutrino-electron elastic scattering

J. Park,¹ L. Aliaga,^{2,3} O. Altinok,⁴ L. Bellantoni,⁵ A. Bercellie,¹ M. Betancourt,⁵ A. Bodek,¹ A. Bravar,⁶ H. Budd,¹ T. Cai,¹ M. F. Carneiro,⁷ M. E. Christy,⁸ J. Chvojka,¹ H. da Motta,⁷ S. A. Dytman,⁹ G. A. Díaz,^{1,3} B. Eberly,^{9,*} J. Felix,¹⁰

"Modern" 👄 neutrino scattering scoreboard

Published σ papers	PRL	PRD	PLB	Total
MINERvA	6	4	1	11
MiniBooNE	1	7		8
T2K	1	6		7
ArgoNEUT	2	2		4
SciBooNE		4		4
MINOS		2		2

(Of course, we have 0 oscillation papers. 😁)

Can't wait to see MicroBooNE, SBND, and NOvA on this list!

Beam! Lots and lots of beam!

Our warmest thanks to the accelerator division for the great beam!

8

detector for muon sign identification.

- Many thanks to the MINOS+
 collaboration for sharing this data with us and for a productive and successful partnership maintaining the Near Detector over the past few years.
- Thanks also to the Fermilab operations team that has helped keep both detectors operating smoothly!

Keeping it all working

• We rely on the MINOS near

Oct 23 to Jun 8, 36.43×10¹⁹ POT Delivered

16 June 2016

🛟 Fermilab

Data quality in the "Medium Energy"

- NuMI has been running in the "Medium" • Energy" mode since NOvA began taking data.
 - Low Energy prior to NOvA turn on.
- This is a natural "second epoch" for MINERvA.
- The detector is performing well and • understandably according to all of our various data quality metrics in this period.

Energy Deposited per Strip (MeV)

Rock Muon Energy as Function of Time in Medium Energy

Recent physics highlights...

- Strange production
- Nuclear effects at low three-momentum transfer
- Electron neutrinos
- Medium energy CCQE (early work-in-progress)

‡ Fermilab

Strange physics

- K+ production by atmospheric neutrinos (especially NC) is an important background for proton decay searches, $p \rightarrow Kv$
- DUNE background prediction is 1 event per Mton-year*. Are we even close?
- K+ production complements π + production as a probe of hadronic FSI.

My guess: $v_{\mu}p \rightarrow \mu^{-}K^{+}\Sigma^{+}$

Strange physics

- Charged current K+ production cross section shows reasonably good agreement with simulation.
- This measurement increased the world's sample of K+ production events from neutrinos from dozens to thousands!

Strange physics

- Neutral current K+ production cross section shows reasonably good agreement with simulation.
- We need improvements in the interaction and FSI models, but this result supports the idea that background estimates in proton decay searches are reasonable.

Nuclear effects at low three momentum transfer

Nuclear effects at low three momentum transfer

 Build a more sophisticated nuclear model - include RPA (Weak charge screening) and 2p2h effects (Nieves, et al. PRC 70, 055503 & PRC 83, 045501) in private modification of GENIE (now a permanent contribution to the generator code).

* Also with pion production re-tuned.

P. Rodrigues, JETP Seminar, 11 Dec 2015

Data

v_e CCQE-like

Other CC ve

Other NC π^0

10

10

NC Coh

+ e elastic

Absolutely normalized (3.49

Compared

to data

Electron-neutrinos

- "QE-like" (0-pion final state) electron-neutrinos.
 - Electron or position. -
 - Any number of protons and/or neutrons. -
 - *First* measurement ever of this channel.

Events 600

500

400

Electron-neutrinos

2.4

2.2

2

1.8

1.6

1.4 1.2

0.8 0.6

0.2

0

2

<mark>do</mark> (10⁻³⁹ cm² / GeV / nucleon)

- Statistically consistent with the generator prediction.
- Q² (four-momentum transfer squared) consistent with MINERvA measurement for muon neutrinos.
- Nuclear and kinematic effects are consistent with their modeling.

2.5

Absolutely normalized (3.49 imes 10²⁰ POT)

Who ordered that?

‡ Fermilab

Who ordered that?

https://arxiv.org/abs/1604.01728

16 June 2016

7

ost fully calibrated.

Medium Energy "QE-like" (0-pion final state)

- The higher energy beam tune gives us a much higher reach in fourmomentum transfer squared (Q^2).
 - And this is only about 30% of the data for neutrinos!

1 track

2 tracks

Conclusion

- MINERvA is a results factory with a busy past year and a full pipeline looking forward!
 - Maybe we'll out-do the Wine and Cheese three-peat?
 - Remember to come to the Wine and Cheese *tomorrow!*
- The detector is working well and we're stock-piling an enormous Medium Energy dataset that we've only just begun to analyze.
 - Still wrapping up our NuMI Low Energy analyses, and our new data offer substantially improved statistics for exclusive state channels.
- Ready to come back after the upcoming shutdown.
 - Looking forward to eventually integrating an antineutrino dataset.
- We're learning a great deal about neutrino-nucleus interactions and building a rich set of results that nicely span the first oscillation peak at DUNE with measurements on a variety of targets bracketing Argon in the periodic table.

- On behalf of the whole MINERvA collaboration...
 - ~60 physicists

Thanks for listening!

The Best Thing Since Sliced Bread...

The MINERvA detector is comprised of a stack of MODULES of varying composition, with the MINOS Near Detector acting as a muon spectrometer. It is finely segmented (~32 k channels) with multiple nuclear targets (C, CH, Fe, Pb, He, H₂O).

16 June 2016

🛟 Fermilab

MINERvA Modules

Modules have an outer detector frame of steel and scintillator...

...and an inner detector element of scintillator strips and absorbers/ targets.

- Four basic module types:
 - *Tracker:* two scintillator planes in stereoscopic orientation.
 - *Hadronic Calorimeter:* one scintillator plane and one 2.54-cm steel absorber.
 - *Electromagnetic Calorimeter:* two scintillator planes and two 2-mm lead absorbers.
 - *Nuclear Targets:* absorber materials (some with scintillator planes).
- Instrumented outer-detector steel frames.
- 120 Total Modules: 84 Tracker, 10 ECAL, 20 HCAL, 6 Nuclear Targets.

Plastic Scintillator Strips: The Active Detector Elements.

Charge-sharing for improved position resolution (~3 mm) & alignment.

Strips are bundled into PLANES to provide transverse position location across a module. Fibers bundled into cables to interface with 64 channel multianode PMTs.

Operations updates

- Many improvements to remote shift and monitoring technology.
 - We can now monitor the detector via the web on a smartphone!
- Water target filled on 22 Feb 2016 (170.3) gallons).
- Busy shutdown ahead of us:
 - New firmware for front end boards and our custom VME boards (to reduce deadtime in upcoming higher intensity Medium Energy NuMI beam).
 - Preparing to take over operation of the **MINOS Near Detector.**
 - Building new test stands in Lab F for electronics and PMT checkout.

<

Existing K+ production data

C. Marshall, JETP Seminar, 5 Feb 2016

N. J. Baker et al., Phys.Rev. D24, 2779 (1981)

ANL 12' bubble chamber

BNL 7' bubble chamber

Also Gargamelle: Physics Letters B 73 4-5 (1978)

🛠 Fermilab

Nuclear effects at low three-momentum transfer

16 June 2016

‡ Fermilab

Nuclear effects at low three-momentum transfer

Nuclear effects at low three-momentum transfer

Nuclear effects at low three momentum transfer

