LHC Physics Highlights

Keti Kaadze Kansas State University

The Standard Model

Elementary particles and their interactions are described by the standard model

Explains

- Structure of all matter on earth
- Interactions observed so far
- Mechanism of mass generation for particles*. However...

The SM is Incomplete

- In 1933 Zwicky inferred existence of "dunkle Materie"
 - Later, in the measurements by different astronomers it was found that rotational velocities of the galaxies in large discrepancy to the expectation according to Newton's law
 - Today nature of dark matter is still unknown

June 15, 2016

More General Theory?

- How matter antimatter asymmetry is explained?
- Why do we have three generations of quarks and leptons?
- Does Gravity enter the picture? How?
- Are there more interactions in nature?

etc...

Large Hadron Collider

LHCh

- Run 2 for LHC:
- CME = 13 TeV
- Increased number of bunches (288b trains)
- 25 ns bunch spacing
- Reduced beam size at IP (beta* 40cm)
- Shorter and faster intensity rump up

ATLAS and CMS Detectors

- Detectors are ready to tackle challenges of Run 2
 - Improved trigger menus for 5x10³³ - 1x10³⁴ cm⁻²s⁻¹
 - Mitigation of pileup of ~25-35 inter.
 - Detector calibration/alignment and commissioning successfully achieved

Intense work was done on the CMS cryogenic system during winter technical stop. The CMS magnet operates at 3.8T since end of April, 2016

49th

201

5

June

Luminosity

7

Higgs properties from Run I

8

2016

15,

June

The SM revisited at 13 TeV

Inclusive jet production

g

2016

15,

June

Higgs re-Discovery in Run 2

S Keti Kaadze (Kansas State Results from the LHC 49th Annual Fermilab Meeting

- First look at $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$
 - Higgs signal is in agreement with the SM
 - Sensitivity is still smaller than in Run I
 - Both experiments extract inclusive cross sections

Diboson Resonances

- Anomalies from Run I in $X \rightarrow VV$ searches: excess at ~2 TeV
 - Seen by both experiments; Seen in various channels; Global significance \sim 2-2.5 σ

- Boosted boson decaying to two quarks is identified as a big merged jet
 - Mass of the jet is one of the main discriminators
 - Jet substructure variables provide further separation from background

Low momentum boson decay High momentum boson decay 6

Diboson Resonances

12

49th Annual

June

And, Diphoton Resonances

ATLAS-CONF-2016-018

Seen in both experiments

- = ATLAS: local significance > 3.5σ , global significance ~ 2σ
- CMS: local significance ~ 2.6σ, global significance < 1.2σ
 - CMS had ~25% less data than ATLAS with magnetic field

Number of theory papers as a function of time since seminar in December 15, 2015

2016

15,

June

Improvements

CMS-PAS-EXO-16-018

- Electromagnetic calorimenter calibration
- Including OT data
 - Con: No track momenta information
 - Pro: No energy spread due to bremsstrahlung/conversion

Simple track counting algorithm

Dedicated energy scale calibration with 0T $Z \rightarrow ee events$

Current Picture of the Excess

What about $X \rightarrow Z\gamma$?

June 15, 2016

What about $X \rightarrow Z\gamma$?

Results from the LHC

Mono-photon Search

Outlook

- Successful startup in 2016
 - The LHC has successfully resumed colliding protons at 13 TeV CME
 - The ATLAS and CMS detectors are in great shape to collect delivered data
- First 13 TeV data from 2015 (~3/fb) analyzed to large extend
 - The SM still in good shape
 - Search for BSM physics is ongoing with the full speed
 - Excesses from Run I searches are not (yet?) confirmed or fully disproved
 - New interesting, mild excess in diphoton mass spectrum seen by both experiments
 - It is going to be very exciting year the most important is to stay calm and keep working!

June 15, 2016

June 15, 2016

Additional Material

Future Plans

Physics opportunities at 3000/fb

- 2-10% precision on Higgs couplings.
- Coupling to the 2nd generation fermions will be probed for the first time by measuring the Higgs boson decays to two muons.
- Evidence of di-Higgs production (allow to study Higgs boson self coupling).

June 15, 2016

Physics opportunities at 3000/fb

 VBF H → ττ: enabled by VBF jet tagging, τ-ID, MET resolution

HH → bbγγ with background from ZH, ttH, bbH

EXO

Higgs

 Mono-channel to search for the Dark Matter, including MonoHiggs.

June 15, 2016

Physics opportunities at 3000/fb

Higgs properties from Run I

$X \rightarrow Z\gamma$ in leptonic decay mode

<u>CMS-PAS-EXO-16-019</u> <u>CMS-PAS-EXO-16-021</u>

$X \rightarrow Z\gamma$ in leptonic decay mode

<u>CMS-PAS-EXO-16-019</u> <u>CMS-PAS-EXO-16-021</u>

$X \rightarrow Z\gamma$ in hadronic decay mode

Supersymmetry

Recent results from ATLAS are found here arXiv:1605.09318

Keti Kaadze (Kansas State U) Results from the LHC 49th Annual Fermilab Meeting June 15, 2016

Supersymmetry

June 15, 2016

Diboson 8TeV and 13TeV combination

Table 5: Statistical significance of excesses observed at 1.8 TeV in the various searches, expressed in standard deviations.

Combination	W'	Z'	HVT (W' +Z')	G _{bulk}
VV 13 TeV	0.00	0.10	0.00	0.00
VV+VH 13 TeV	0.00	0.00	0.00	-
VV 8 TeV	1.22	0.56	1.03	1.61
VV 8+13 TeV	0.20	0.46	0.33	0.35
VH 8 TeV	2.05	0.56	1.79	-
VV+VH 8 TeV	2.22	0.77	1.95	-
VV+VH 8+13 TeV	0.86	0.00	0.83	-

